Information
- Publication Type: Master Thesis
- Workgroup(s)/Project(s): not specified
- Date: 2025
- TU Wien Library: AC17720179
- Open Access: yes
- First Supervisor: Michael Wimmer
- Pages: 92
- Keywords: Offset Surfaces, Non-Uniform Offset, Volumetric Method, Octree, Dual Contouring, Radial Basis Function, Per-Vertex Control, k-d Tree, Signed Distance Field, Computer Graphics
Abstract
Offset surfaces are fundamental in computer graphics applications, such as computer-aided design or tool-path generation. However, generating them while preserving geometric details and handling self-intersections remains challenging, particularly for surfaces with sharp features. This thesis presents a robust method for non-uniform offset surface generation, extending volumetric, feature-preserving uniform offset approaches to allow per-vertex control over offset distances. This enables greater flexibility in handling complex geometries and user-defined specifications.To achieve a smooth distribution of offsets across the input mesh, the method introduces a Radial Basis Function interpolation combined with Dijkstra-based distance propagation. The method supports the extraction of both inner and outer offset components through an octree data structure and a modified Dual Contouring algorithm adapted for non-uniform distances, ensuring accurate and manifold surface generation. This approach's adaptability and robustness are demonstrated across diverse input models with varying offset assignments. They showcase successful extraction of inner and outer components and the ability to capture localized asymmetries while preserving geometric integrity.Additional Files and Images
Weblinks
- Entry in reposiTUm (TU Wien Publication Database)
- CatalogPlus (TU Wien Library)
- DOI: 10.34726/hss.2025.40588
BibTeX
@mastersthesis{weydemann-2025-noo,
title = "Non-uniform offsetting of surfaces",
author = "Tazzio Ludwig Weydemann",
year = "2025",
abstract = "Offset surfaces are fundamental in computer graphics
applications, such as computer-aided design or tool-path
generation. However, generating them while preserving
geometric details and handling self-intersections remains
challenging, particularly for surfaces with sharp features.
This thesis presents a robust method for non-uniform offset
surface generation, extending volumetric, feature-preserving
uniform offset approaches to allow per-vertex control over
offset distances. This enables greater flexibility in
handling complex geometries and user-defined
specifications.To achieve a smooth distribution of offsets
across the input mesh, the method introduces a Radial Basis
Function interpolation combined with Dijkstra-based distance
propagation. The method supports the extraction of both
inner and outer offset components through an octree data
structure and a modified Dual Contouring algorithm adapted
for non-uniform distances, ensuring accurate and manifold
surface generation. This approach's adaptability and
robustness are demonstrated across diverse input models with
varying offset assignments. They showcase successful
extraction of inner and outer components and the ability to
capture localized asymmetries while preserving geometric
integrity.",
pages = "92",
address = "Favoritenstrasse 9-11/E193-02, A-1040 Vienna, Austria",
school = "Research Unit of Computer Graphics, Institute of Visual
Computing and Human-Centered Technology, Faculty of
Informatics, TU Wien",
keywords = "Offset Surfaces, Non-Uniform Offset, Volumetric Method,
Octree, Dual Contouring, Radial Basis Function, Per-Vertex
Control, k-d Tree, Signed Distance Field, Computer Graphics",
URL = "https://www.cg.tuwien.ac.at/research/publications/2025/weydemann-2025-noo/",
}