B Informatics

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

Non-Uniform Offsetting of
Surfaces

DIPLOMARBEIT

zur Erlangung des akademischen Grades
Diplom-Ingenieur
im Rahmen des Studiums
Visual Computing
eingereicht von

Ludwig Weydemann, BSc
Matrikelnummer 00925369

an der Fakultat fir Informatik

der Technischen Universitat Wien

Betreuung: Univ.Prof. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer

Wien, 24. September 2025

Ludwig Weydemann Michael Wimmer

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 = www.tuwien.at

“jayiolgig usipn N1 1e wud ul ajge(rene si sisay) syl Jo uoisian [euibuo panoidde ay | < any 38pajmoust InoA
JeqgbBnyian yaylolqig usipn NL Jap ue 1si 1agrewoldiq Jasalp uoisiaAfeulBuQ aponipab ausiqoldde aiqg v_U:#O__ﬁ—_m

B Informatics

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

Non-Uniform Offsetting of
Surfaces

DIPLOMA THESIS
submitted in partial fulfillment of the requirements for the degree of
Diplom-Ingenieur
in
Visual Computing
by

Ludwig Weydemann, BSc
Registration Number 00925369

to the Faculty of Informatics
at the TU Wien

Advisor: Univ.Prof. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer

Vienna, September 24, 2025

Ludwig Weydemann Michael Wimmer

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 = www.tuwien.at

“jayiolgig usipn N1 1e wud ul ajge(rene si sisay) syl Jo uoisian [euibuo panoidde ay | < any 38pajmoust InoA
JeqgbBnyian yaylolqig usipn NL Jap ue 1si 1agrewoldiq Jasalp uoisiaAfeulBuQ aponipab ausiqoldde aiqg v_U:#O__ﬁ—_m

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

Erklarung zur Verfassung der
Arbeit

Ludwig Weydemann, BSc

Hiermit erklére ich, dass ich diese Arbeit selbstéindig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollstdndig angegeben habe und dass ich die Stellen der
Arbeit — einschliefSlich Tabellen, Karten und Abbildungen —, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Ich erkldre weiters, dass ich mich generativer KI-Tools lediglich als Hilfsmittel bedient
habe und in der vorliegenden Arbeit mein gestalterischer Einfluss iiberwiegt. Im Anhang
,Ubersicht verwendeter Hilfsmittel* habe ich alle generativen KI-Tools gelistet, die
verwendet wurden, und angegeben, wo und wie sie verwendet wurden. Fiir Textpassagen,
die ohne substantielle Anderungen iibernommen wurden, haben ich jeweils die von
mir formulierten Eingaben (Prompts) und die verwendete IT- Anwendung mit ihrem
Produktnamen und Versionsnummer/Datum angegeben.

Wien, 24. September 2025
Ludwig Weydemann

“jayiolgig usipn N1 1e wud ul ajge(rene si sisay) syl Jo uoisian [euibuo panoidde ay | < any 38pajmoust InoA
JeqgbBnyian yaylolqig usipn NL Jap ue 1si 1agrewoldiq Jasalp uoisiaAfeulBuQ aponipab ausiqoldde aiqg v_U:#O__ﬁ—_m

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

Acknowledgements

I would like to express my gratitude to Rechenraum for providing the opportunity to work
on this thesis and for supporting the development of this project. Special thanks go to
Simon Flory whose guidance, technical insight and continuous support were appreciated
throughout the entire process.

Furthermore, I would like to thank my supervisor, Professor Michael Wimmer, for his
support, input, and feedback during all phases of the thesis. I am also grateful to Leonard
Weydemann for his time, feedback, and assistance with proofreading.

vii

“jayiolgig usipn N1 1e wud ul ajge(rene si sisay) syl Jo uoisian [euibuo panoidde ay | < any 38pajmoust InoA
JeqgbBnyian yaylolqig usipn NL Jap ue 1si 1agrewoldiq Jasalp uoisiaAfeulBuQ aponipab ausiqoldde aiqg v_U:#O__ﬁ—_m

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

Abstract

Offset surfaces are fundamental in computer graphics applications, such as computer-aided
design or tool-path generation. However, generating them while preserving geometric
details and handling self-intersections remains challenging, particularly for surfaces with
sharp features. This thesis presents a robust method for non-uniform offset surface
generation, extending volumetric, feature-preserving uniform offset approaches to allow
per-vertex control over offset distances. This enables greater flexibility in handling
complex geometries and user-defined specifications.

To achieve a smooth distribution of offsets across the input mesh, the method introduces
a Radial Basis Function interpolation combined with Dijkstra-based distance propagation.
The method supports the extraction of both inner and outer offset components through an
octree data structure and a modified Dual Contouring algorithm adapted for non-uniform
distances, ensuring accurate and manifold surface generation.

This approach’s adaptability and robustness are demonstrated across diverse input models
with varying offset assignments. They showcase successful extraction of inner and outer
components and the ability to capture localized asymmetries while preserving geometric
integrity.

ix

“jayiolgig usipn N1 1e wud ul ajge(rene si sisay) syl Jo uoisian [euibuo panoidde ay | < any 38pajmoust InoA
JeqgbBnyian yaylolqig usipn NL Jap ue 1si 1agrewoldiq Jasalp uoisiaAfeulBuQ aponipab ausiqoldde aiqg v_U:#O__ﬁ—_m

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

Abstract

Contents

1

Introduction

1.1 __Problem Statement
1.2 Contributions
1.3 Structure of the Workl . . .

Contents

State-of-the-Art and Related Work

2.1 __Overview of Offset Surface Generationl
2.2 Dual Contouring in Offset Surface Extraction
2.3 Contributions & Advancements

Uniform Offset Approach

3.1 Constant Offset/
3.2 Algorithm Overview|
3.3 Octree

3.4 Signed Distance Field Computation
3.5 Mesh Shifting and Smoothing 0oL

Non-Uniform Offset Approach

4.1 _Variable Offsetl
4.2 Algorithm Overview

4.3 Interpolation with Radial Basis Function|.
4.4 Qctree Subdivision & Non-Uniform Primitive Intersections.
4.5 Mesh Shifting and Smoothing|o
4.6 Outer and Inner Offset Surface Extraction/

Mesh Extraction with Dual Contouring

5.1 Dual Contouring
5.2 Algorithm Overview|

5.3 Dual Contouring Algorithm

ix

=W W e

\]

13
15

17
17
22
24
26
34

39
39
40
42
45
53
95

59
99
62
63

Xi

77

1Scussion

6 Results & D

77
78
80

6.1 Resultsl.

6.2 Discussionl

6.3 Limitations

83
84

7 Conclusion & Future work

7.1 Future Work

87

Overview of Generative AI Tools Used

91

Bibliography

Yaylolqig usipn NL 1e wud ul ajgejiene si sisayl SIyl Jo uoisian [euibuo panoidde ay g
Jregbnuian yayiolqlg uaiph NL Jap ue 1si uagrewo|diq 1asalp uoisiaAjeulbliO aonipab ausiqoidde aig

qny a8pajmous| JNoA

Srayrolqie

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

CHAPTER

Introduction

Offset surfaces are used in a wide range of different computer graphics applications,
ranging from CAD to geometric modeling [Mae99|] [Blo8§|. These surfaces are computed
in multiple contexts, such as tool-path generation in machining [SY94], shape manipu-
lation in animation, three-dimensional modeling, or morphological operations in image
processing [Ser83]. As the name suggests, an offset surface is a newly generated surface
that lies within a particular, defined threshold distance (offset) away from the input
surface. This specific distance can be set by the user, determined by an algorithm, or
based on certain design requirements. One of the challenges of generating such surfaces is
preserving geometric details, since the offset process can change the topology or require
high computational precision to reflect finer surface details. Offsetting approaches have
problems when the input surfaces contain sharp details, such as sharp edges or sharp
corners. Parts of the offset surface can overlap or intersect themselves, which is known
as self-intersection. This occurs when the resulting surfaces expand or contract into
such sharp geometry and result in non-manifold geometry, such as overlapping edges or
missing faces. To preserve fine geometric details, standard volumetric approaches smooth
or otherwise manipulate the geometry, which causes topological changes and loss of fine
details, which leads to an output model that is less accurate and may not reflect the
original physical properties [Mae99].

Pavic et al. [PKO8| proposed a solution to this problem, working with a high-resolution
volumetric approach with feature preservation. They embed the input surface into an
octree, a tree data structure that recursively subdivides the three-dimensional space into
octants, based on the level of detail required. This data structure is then traversed to
compute a signed distance field (SDF), which assigns to each point in space the shortest
distance to the original surface. The leaves of the octree structure can now be used to
generate an offset surface, since the octree cells at the lowest level store the distance
values to the input geometry. This ensures that the distance field generated by the
volumetric octree defines where the offset surface should be located relative to the original

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

m 3ibliothek,
Your knowledge hub

1.

INTRODUCTION

Figure 1.1: Shown here are the results from the algorithm with a constant offset, from left
to right: the inner offset surface, the input surface and the outer offset surface. Both inner
and outer offset surfaces were put through the DC rasterization phase and smoothed. A
constant offset was used for both inner and outer offset surfaces. The octree generates
leaves on the fifth level. The offset distance used for the output surface is 0.005.

geometry, helping to avoid self-intersections by measuring the distance across the octree
and avoiding overlapping surfaces even in regions with complex detail. The distances in
the octants are used to construct the offset surface within a defined distance threshold.

In Figure the outer offset surface is shown on the right, with the input surface
model in the middle. A constant offset is used, and the offset surface is computed from
the leaf nodes of an octree of five levels. On the left, the inner offset model is shown,
which is generated towards the interior with the same parameters as for the outer offset
surface. With this volumetric approach, features are well preserved because instead of
only working with a grid-based solution traversing the octree, the input surface’s triangles
are used for distance computation.

The approach of Pavic et al. uses a variant of Dual Contouring (DC) to rasterize
the volumetric data, which was introduced by Ju et al. in 2002 [JLSW02]. This is a
surface extraction method that extracts volumetric data from the octree by placing
vertices at the intersection of grid cells and rasterizes the data into a mesh shifted by the
offset. Due to the use of surface normal information and handling cases where cells are
cut through in a non-uniform manner, DC preserves sharp features such as edges and
corners. This ensures that only meshes are generated that accurately represent the offset
surfaces while handling complex geometries.

With the solution of Pavic et al., a uniform offset surface is calculated, which may be
insufficient for methods where the offset needs to vary across the surface. In applications
such as tool-path generation or medical imaging [SY94], where the offset may depend
on local geometric properties or other external factors, a uniform offset is inadequate.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

1.1. Problem Statement

These approaches require a more flexible, namely a non-uniform offset approach.

1.1 Problem Statement

The challenge lies in extending existing robust, feature-preserving volumetric offset
methods, such as that by Pavic et al. [PKO08], to support non-uniform, spatially varying
offset distances without sacrificing mesh quality or introducing topological ambiguities.
Although their method for feature preservation is very effective, a non-uniform offset is
required in physical simulations [TPBF87] or adaptive shape morphing [BS08]. With
the introduction of a variable offset, it is possible to handle a range of different material
properties, local curvature, or other user-defined properties.

Encapsulating variable offsets based on specific local geometric properties of the surface
requires the introduction of an algorithm to specify and interpolate a non-uniform offset
across the input surface geometry.

The underlying octree structure and its subdivision criteria need to be adapted, as the
offset distance is no longer constant, while still ensuring accurate distance computation
and efficient space partitioning. The DC mesh extraction algorithm needs to robustly
handle the implicit, variable surface defined by non-uniform offsets, especially concerning
issues like ambiguous topologies, duplicate face generation, and maintaining manifoldness
without the strict guarantees of a uniform SDF.

1.2 Contributions

In this thesis, the method of Pavic et al. [PKO08] is extended by a method for variable
offset calculation. With this method, instead of applying a uniform offset across the
entire input surface, a per-vertex non-uniform offset is applied to the mesh. A variable
offset field can be created by assigning specific offset distances to a subset of the original
vertices. The resulting offset surfaces can now adapt to user-defined constraints.

A radial basis function (RBF) interpolation is employed to ensure a continuous and smooth
interpolation of offset distances for vertices on the mesh that lack a specific, predefined
offset. RBFs rely on Euclidean distances, which can be inaccurate for measuring proximity
along complex or non-convex surfaces. To solve this, Dijkstra’s algorithm is utilized
to approximate geodesic distances along mesh edges. This provides a more meaningful
distance metric for interpolation that respects the surface geometry. With the help
of a k-d tree, neighboring vertices are efficiently found, leading to a smooth variable
offset distance field that preserves features of the original surface, similar to the original
method.

The new octree-based distance propagation integrates easily into the existing octree
traversal and distance computation of triangles of the original approach. It still supports
the creation of an SDF and as a result, avoids self-intersections. The adapted approach
keeps the high-resolution computation of offset surfaces and now enables non-uniform

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

1.

INTRODUCTION

Figure 1.2: Shown here is the original input surface model on the left. On the right, a
variable offset surface model can be seen after smooth interpolation with the help of an
RBF. Vertices are picked at the Stanford bunny’s right ear to create a slightly bigger
offset surface around it. The variable octree depth is five, with a variable offset of 0.15.

offsets. In Figure the outer offset surface computed using our method is shown.
Specifically, on the right ear of the Stanford bunny, vertices have been picked and used
for the variable offset surface calculation. The RBF is used to interpolate offset values
across the input model, resulting in a bigger ear on the right side of the model.

In addition to the outward offset, the proposed method also supports the generation of
inner offsets, as shown in Figure on the left. Here, the inner offset surface model is
shown after the rasterization phase of the DC algorithm. The generation of the offset
surface is taken from the octree leaves on the fifth level with a constant offset. The inner
offset is an offset surface shrunk toward the interior of the input geometry. This can be
used in scenarios like hollowing out shapes or the simulation of material removal. Both
the outer and inner offset are supported by the nearest-neighbor search based on k-d
trees, which interpolates the offset values across the surface.

Additionally, this thesis provides a detailed explanation and documentation of the
DC algorithm, along with several adaptations necessary for robust and efficient mesh
extraction from volumetric data with variable offsets.

1.3 Structure of the Work

The thesis is organized as follows: Chapter [2] State-of-the-Art and Related Work, reviews
existing offset surface generation techniques. It explores methods for mesh extraction, with
particular focus on the DC algorithm. This will serve as the foundation for understanding

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

1.3. Structure of the Work

the strengths and limitations of current approaches, providing the background for this
work.

In the third Chapter 3, Uniform Offset Approach, the details of the constant offset
distance generation approach are explained. The chapter describes the distance field
construction process, its use of the volumetric propagation with the octree, and how the
mesh will be shifted and smoothed. This will serve as the framework for the next chapter.

Moving forward, in Chapter 4, Non-Uniform Offset Approach, the creation of non-uniform
offset surfaces, highlighting its differences from the uniform method, is explained. It
covers the use of the RBF and k-d trees for variable offset distance interpolation, as well
as the extraction of both the inner and outer offset surfaces.

Chapter |5 focuses on the DC algorithm. It details specific contributions and adaptations
made, including an overview of the mesh reconstruction pipeline. The implementation
aspects, such as face generation, vertex ordering, and duplicate face detection, are also
thoroughly discussed.

Finally, Chapter 6, Results & Discussion, presents the outcomes of applying the imple-
mented methods to various input models and analyzes their performance and limitations.
Chapter 7, Conclusion & Future Work, concludes the thesis by summarizing the strengths
and limitations of the presented approach and suggests directions for future work.

“jayiolgig usipn N1 1e wud ul ajge(rene si sisay) syl Jo uoisian [euibuo panoidde ay | < any 38pajmoust InoA
JeqgbBnyian yaylolqig usipn NL Jap ue 1si 1agrewoldiq Jasalp uoisiaAfeulBuQ aponipab ausiqoldde aiqg v_U:#O__ﬁ—_m

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

CHAPTER

State-of-the-Art and Related
Work

An offset surface is a parallel surface that is a distance away from an input surface. If
the offset distance is fixed and constant, the offset surface is classified as a uniform offset
surface. If the offset surface is defined as non-uniform or variable, the distance between
the input and offset surface is determined by parameters that vary across the surface.

Offset surfaces have a wide range of applications: geometric modeling, implicit modeling,
physics simulation, CAD, and CNC machining. Variable offset finds application, especially
when designing parts with specific thickness requirements, such as gears and casings. But
also has its uses in three-dimensional modeling and animation, helping in the creation of
characters and environments.

2.1 Overview of Offset Surface Generation

Offset computation methods can be categorized according to their underlying implemen-
tations. They can generally be divided into analytical and discrete approaches, but they
may incorporate elements of both. This overview introduces several key methodologies,
which are used to categorize the different state-of-the-art approaches in the sections
about uniform 2.1.1/ and non-uniform [2.1.2| offset surfaces.

Analytical Analytical offset methods, where the offset is explicitly or directly computed
using mathematical formulations, are based on differential geometry or parametric surface
representations such as NURBS. Other approaches also incorporate Boolean operations
to construct offset distance regions, especially in two-dimensional representations for
CAD applications. These methods are well-suited for low-detail models, used in CAD or
CNC applications. Despite this, they struggle with complex or highly detailed models.

7

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

2.

STATE-OF-THE-ART AND RELATED WORK

Discrete Discrete offsets are based on discrete representations, such as meshes, SDFs,
or volumetric grids, which try to approximate the offset surfaces. These approaches can
be further distinguished based on how they modify or reconstruct the offset surface.

Volumetric Volumetric approaches embed the input surface into a spatial data struc-
ture, such as an SDF or an octree, to determine the offset distances. These volumes are
then evaluated to extract the offset surface. These approaches preserve features through
methods like DC. Although they are robust against self-intersections, their reconstruction
steps may be more expensive and require additional processing.

Constraint-solver Constraint-solver methods define the offset surface generation as
a system of geometric constraints that need to be satisfied. These approaches aim for
high precision, particularly in applications like CNC machining, by implicitly represent-
ing the offset through distance constraints. Solving these constraint systems can be
computationally expensive, especially for high-resolution models.

Mesh-based Mesh-based sampling approaches directly modify or resample the vertices
of a discrete mesh, instead of using an implicit representation, to create an offset surface.
This can involve moving vertices along their normal or re-meshing to adjust for artifacts.
These methods do not preserve topology, which can lead to distortions or artifacts in the
output mesh. Due to moving vertices individually, non-manifold geometry can be the
result. This means that additional post-processing is necessary.

Topological Embedding The topological embedding technique prioritizes the preser-
vation of the input mesh’s global properties, such as manifoldness. These methods embed
the surface into a volumetric mesh, such as a tetrahedron, to manipulate this embedding
to generate self-intersection-free offset surfaces. With this comes an additional overhead,
since the embedding process can become computationally expensive.

Particle-based Feature-aligned offsets, such as particle-based methods, attempt to
dynamically adjust or reposition elements to align with predefined geometric constraints.
Similarly, parallel mesh offsetting propagates offsets with graph-based techniques or
dynamic programming while maintaining mesh connectivity.

Mitered offset The mitered offset method focuses on preserving sharp features and
maintaining connectivity by explicitly handling feature edges and stitching offset regions
together. This results in a robust and accurate result, with the caveat that complex
geometries might present a challenge.

Other variations include anisotropic sampling in offset surfaces and adjusting the res-
olution of offset surfaces based on local geometry. This could be either the curvature,
where sampling is increased in curved areas, or decreased in others. Adaptive spacing,
which does the opposite, is lower sampling, where a coarse approximation is enough.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

2.1. Overview of Offset Surface Generation

Despite this potential benefit, this can become computationally expensive since it requires
curvature analysis and adaptive refinement. Interpolation issues can arise between areas
of different resolutions.

2.1.1 Existing Work on Uniform Offsetting Methods

Volumetric Pavic et al. [PKO§| present a high-resolution volumetric approach for
generating offset surfaces with feature preservation. They embed the input mesh in a
highly detailed volumetric grid data structure, an octree, and compute an SDF. The SDF
assigns to each point in space the shortest distance to the original surface, with the sign
indicating whether the point lies inside or outside the surface. The octree recursively
subdivides space into smaller octants, providing higher detail where necessary. The
main goal of their approach is to preserve features of the input mesh while calculating a
uniform offset surface, which is achieved through an SDF with the help of the Minkowski
sum.

Their method uses the Minkowski sum to compute the offset surface by expanding the
input mesh geometry by a specified distance, creating a boundary that defines the new
offset surface. This ensures a precise offset by considering the distance from each point
on the mesh to the surface. The octree structure stores the minimum distance between
each octant to the surface, which is used to compute the offset surface on the lowest
levels of the octree data structure. The chapter on uniform offsets |3 goes into more detail
about the Minkowski sum. An example of a simple uniform offset surface created with
the Minkowski sum can also be seen in Figure 3.1.

Another key contribution is the use of the DC algorithm for mesh extraction to preserve
sharp features of the input mesh, such as corners and edges. They employ a variant of the
Juet al. [JLSW02] DC algorithm. The distance values stored in the octree are used in
the mesh extraction step to generate an offset surface, therefore keeping the input mesh’s
fine details. A post-processing step to smooth the extracted mesh is needed to prevent
artifacts that might emerge from the discrete nature of the octree-based representation.

The approach has some limitations, the use of the SDF with the combination of the
Minkowski sum can be computationally expensive. Especially with high-detail models,
computing distances to the surface for each cell in the octree requires a lot of computational
resources.

Zint et al. [ZMRLAZ23] propose an alternative volumetric approach to generate feature-
preserving offset surfaces using a topology-adapted octree. The offset distance is set
globally and embeds the input mesh within an octree, where the initial cell is large
enough to contain both the input mesh and the offset distance. Their octree generation
is similar to the approach of Pavic et al. [PKO08], the octree refinement is guided by
geometric and topological complexity, and instead of refining always to maximum depth,
their approach avoids over-refinement in topologically simple regions by not subdividing
cells that are of no interest.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

2.

STATE-OF-THE-ART AND RELATED WORK

10

Once the octree is adaptively refined based on feature complexity, the offset surface is
extracted using a variant of DC. The mesh extraction step is similar to the approach of
Pavic et al. [PKO08] of a DC variant. In DC, polygons are created at the intersections
between occupied and unoccupied cells, ensuring that the offset boundary is captured ac-
curately. They propose an improvement to DC used in offset surface mesh reconstruction,
and instead of using the approximation error, they use normal deviation and, for vertex
relocation, utilize the quadratic error metric originally devised for mesh decimation. This
ensures that the offset boundary is captured accurately. Zint et al’s [ZMRILA23| approach
places the vertices at feature-sensitive positions rather than at fixed grid intersections,
which helps preserve sharp features and avoids excessive smoothing. As with other DC
approaches, this method can, in extreme cases, produce edges that are shared by more
than two faces (non-manifold edges), which requires additional post-processing.

The resolution of the octree drives the quality and may increase computation time in
very high-resolution meshes.

Constraint-Solver In contrast to volumetric approaches that rely on distance fields or
octree data structures, constraint-solver-based methods try to be as precise as possible
when constructing the surface, achieved through analytical formulations. One such
approach is presented by Johnson et al. [JC09], which is used to calculate offset surfaces
and bisectors of surfaces. A bisector surface is a surface that consists of all points that
are equidistant to two given geometric points, surfaces, or curves, among others. Their
approach implicitly represents the offset surface by using distance constraints from the
input geometry. An adaptive constraint solver, which uses an octree data structure to
refine areas that need higher precision, computes the final offset surface.

The approach uses the bisector to maintain the correct distance between offset surfaces
and helps resolve self-intersection cases. This works well for precise offset computation, as
it is used in CNC machining. A key challenge with this method is that solving constraints
is computationally expensive and requires a well-defined constrained set.

Johnson et al. [JC0O9] use a modified DC approach to extract surface quadrilaterals
(quads). Unlike traditional DC, which relies on a signed distance function, the offset
surfaces are represented through sampled constraints. Furthermore, DC is used not only
to extract the offset surface but also to reconstruct bisector surfaces, which helps to
refine the offset surface.

This method, using a sampled constraint solver, works well for precise offset computation
and is a novel approach to handling offset surface generation, whereas other methods rely
on geometric calculations. However, due to the computationally expensive constraint
system, the method struggles with high-resolution models or complex geometries. The
quality of the offset surface depends on the sampled constraints. This means that the
method can introduce gaps or inaccuracies, or increase the computational overhead. Since
surface features also depend on the quality of the sampled constraints, sharp features,
such as edges, might be smoothed out of the offset surface.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

2.1. Overview of Offset Surface Generation

Topological Embedding While the earlier mentioned methods focus on geometry
or distance fields, topological approaches aim to ensure global surface properties, such
as manifoldness and feature preservation. This is achieved by operating on a different
volumetric representation.

Zint et al. |ZCZ™24] propose such a topological approach to generate self-intersection-free
and manifold offset surfaces. Their method embeds the input surface in a tetrahedral
mesh, which acts as the computational domain for constructing the offset. It is a discrete
offset surface generation approach in which the offset surface is extracted as the boundary
of a modified region within the tetrahedron by enforcing topological rules to preserve
features, such as boundaries and sharp edges. Topological preservation is one of the key
aspects of their approach, making it suitable for applications where exact preservation is
critical, such as in machining and manufacturing.

The main challenge with this method is that these topological constraints introduce
significant computational complexity to the method. For complex geometries or high-
resolution meshes, the additional step of embedding the mesh into the tetrahedron
form can be expensive, making it slower than traditional offsetting methods. The focus
on topological preservation creates an intersection-free offset surface without any post-
processing steps, which are often needed in simpler approaches, such as simple vertex
displacement or Minkowski sum-based methods.

2.1.2 Existing Work on Non-Uniform Offsetting Methods

Unlike uniform offsets, non-uniform offsets allow variable distances across the surface.
This can help adapt to local geometric features or enable the possibility to handle a
range of different material properties. Despite these advantages, this additional flexibility
comes at a cost, primarily in terms of computational challenges and surface smoothness.
Different distances at each surface point are computed instead of the single distance in
uniform offsetting, depending on how the non-uniform offset is defined.

Most approaches focus on dynamic, non-user-controlled variable offsets used for automatic
adaptation of surface characteristics. Instead, a more customized solution involves user-
controlled non-uniform offsets, where the distance is variable to address particular design
requirements, functional specifications or design goals. This direct control provides
the user with greater flexibility, designers or engineers can interactively modify offset
distances to see the effect of their changes.

Ensuring smooth transitions between varying offsets remains a challenge. Different offset
distance interpolation rules must be defined between regions. When offset distances
vary too abruptly, sharp transitions can form, leading to jagged artifacts on offset
surfaces. Several methods exist to prevent sharp transitions, including smoothing filters
or anisotropic sampling.

Analytical Analytical approaches try to compute offset surfaces by explicitly adjusting
distances based on geometric properties of the input mesh. Kumar et al. [RSP02]

11

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

2.

STATE-OF-THE-ART AND RELATED WORK

12

introduce an algorithm to compute offset surfaces specifically for Non-Uniform Rational
B-Splines (NURBS) surfaces. NURBS are a flexible and precise way to represent smooth,
curved surfaces in CAD and computer graphics. A key property is the surface continuity,
which describes how smoothly different parts of a surface, or adjacent surfaces, connect.
G1 continuity, in particular, means that the two surfaces meet without overlaps and
gaps, and where they meet, there is a continuous tangent, ensuring a smooth transition.
The G1 one surface is also called tangential continuity. Kumar et al. [RSP02] use this
mathematical representation to compute offset surfaces without self-intersections.

Their method first identifies special surfaces, such as planes, spheres, cones, and cylinders,
before computing their offsets. After computing the offset, self-intersections are identified
using differential geometric constraints that analyze surface curvature and normal varia-
tion. To eliminate them, the method either trims overlapping regions or adjusts offset
distances dynamically. For free-form offset surfaces, the approach approximates offsets
numerically by discretizing the surface and iteratively adjusting the control points.

A potential drawback is that this may introduce small artifacts, such as deviations from
the exact offset surface geometry or minor discontinuities. Unlike previous methods of
uniform offsetting, which often lead to self-intersections, Kumar et al’s [RSP02] work
introduces dynamically adjusted offset distance computation based on local curvature.
However, their approach is limited in that it applies only to parametric surfaces and is
therefore unable to produce offset surfaces for polygonal meshes.

Boolean Another strategy to compute non-uniform offsets involves Boolean operations,
especially in two-dimensional contexts. Venturini et al. [VGMS23] explore such an
approach for polyline curves. Their method applies Boolean operations to polygonal
boundaries to compute varying offsets. The primary application for this approach is CNC
machining, where varying offsets are dynamically applied to different cutting depths.
This allows for dynamic changes according to machining requirements.

Reliance on Boolean operations may introduce computational complexity, especially for
detailed polygonal input. Compared to other uniform offsetting techniques, this approach
works well in material removal scenarios, but its efficiency in handling sharp corners or
complex geometries remains unproven. The non-uniform offset is dynamic and the result
cannot be controlled with user input.

Particle / Sampling-Based Sampling-based methods, such as those that use particles,
offer flexibility for non-uniform offset surface generation methods across various surface
representations. Meng et al. [MCST18|] introduce a method to generate high-quality
polygonal offset surfaces that align with features of the input model. Their method uses
a particle system that distributes movable sites uniformly around the mesh. This feature
helps to keep the offset surface aligned with geometric lines. Various input surface types
are supported, ranging from triangle meshes, implicit functions, parametric surfaces, to
point clouds.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

2.2. Dual Contouring in Offset Surface Extraction

The particle system ensures a well-distributed set of movable sites, maintaining a consistent
offset distance from the original surface. The movable particles are adjusted to align with
geometric features, introducing localized variations in the offset distance. As a result,
sharp edges and features are well preserved, resulting in dynamic, non-uniform offset
distances.

The offset surface quality depends on the particle system’s parameter tuning and subse-
quent placement. As with the previous two-dimensional approach, the offset distances
are dynamically determined based on geometric features rather than being explicitly
specified at predefined locations.

Mitered Offset The mitered offset approach addresses the challenge of maintaining
connectivity and sharp features in non-uniform offsetting. Rather than simply extruding
the vertices along the normal or smoothing over sharp corners, Cao et al. [CXGT24]
make use of the mitered offset, a method published after this thesis was completed. This
offset ensures that sharp features are preserved and adjusted, and stitches offset surfaces
together at feature edges to maintain connectivity between different offset regions. The
generation of offset geometry is established before the connectivity of the mesh, leading
to improved robustness and accuracy.

Offset distances are assigned per triangle, enabling non-uniform offsets that vary across
different parts of the input mesh. Their algorithm handles both inward and outward
offsets by interpreting the signed scalar offset per triangle.

The approach of Cao et al. |[CXG™24] provides a robust and flexible offset surface
generation method, especially for applications that require non-uniform offset with sharp
feature preservation. Their method relies on exact algorithms for feature preservation
and connectivity, which can potentially increase computation costs, especially for high-
resolution meshes or complex geometry. As with the previous method, the quality of the
offset surface relies on parameter tuning and constraint formulation. This can lead to
undesired artifacts or additional computational costs. Although their approach focuses
on the mitered offset and improves connectivity, highly complex geometries may still
introduce small gaps and require additional post-processing.

2.2 Dual Contouring in Offset Surface Extraction

While direct mesh manipulation and analytical solutions exist, many of the discussed
volumetric and constraint-based non/uniform offsetting methods, especially those aiming
for feature preservation from implicit representations, rely on techniques to extract
a polygonal mesh from the resulting offset field. This process is also known as mesh
extraction, an essential step ensuring that offset surfaces are usable, accurate and manifold
meshes.

Several methods exist for extracting surfaces from volumetric data, including level-set
methods, Marching Cubes, and DC. The latter has several advantages over the other

13

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

2.

STATE-OF-THE-ART AND RELATED WORK

14

methods, including the ability to reconstruct sharp features and accurately adapt to
complex geometries.

For cases where the offset surface can be directly computed from the input mesh, other
non-volumetric methods exist. These include direct vertex displacement, geometric
intersection-based methods, and Minkowski sum approaches, which are mainly used for
offset surface generation in CAD and manufacturing. These methods often struggle
with self-intersections or feature loss, which makes volumetric methods, such as DC
approaches, a more robust choice.

Introduced by Ju et al. [JLSW02], DC improves on the regular grid algorithm, Marching
Cubes by Lorensen et al. [LC8T7], by constructing a dual mesh, which places vertices at
feature-sensitive locations rather than at grid intersections.

Juet al. [JLSWO02] make use of Hermite data (surface normals and positions) to minimize
the geometric error. They base their input data on an adaptive octree. To determine
where to place the vertex inside a cell, DC minimizes the quadratic error function (QEF),
derived from Hermite data, instead of using simple interpolation as in Marching Cubes.
These include intersection points, zero crossing of the implicit function, and corresponding
normals. Zero crossings refer to points where an implicit function changes its sign between
adjacent grid points, indicating a transition from inside to outside of the surface. In the
mesh extraction process, this is equivalent to the surface passing through a cell. These
crossings define constraint planes, which in turn are used in the QEF minimization to
determine where the vertex should be placed. For each intersection point p; and normal
n; a plane can be defined:

n;(x—p;) =0

where x is the position vertex to be determined in the cell. The goal is now to find
a vector x = (z,y, z) that best fits all intersection constraints with the least-squares
method. The error function can be written as follows,

QEF(x) =) (ni(x — pi))*

%

This quadratic system can be solved via various methods, most commonly via singular
value decomposition (SVD) or a pseudo-inverse matrix approach.

Compared to Marching Cubes, which places a linearly interpolated vertex along the
edges of the grid, the DC QEF method looks for the best-fitting location that minimizes
deviations from all intersecting places.

With the vertex positions, the next step is to form faces for the output mesh. DC
constructs faces by following edges where adjacent cells share a boundary. A quad is

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

2.3. Contributions & Advancements

formed by connecting four computed vertices, one from each adjacent cell sharing a
common face. In ambiguous cases, such as regions with high curvature or incomplete
data, DC may split the quad into triangles to maintain a manifold mesh.

An improved approach by Bischoff et al. [BPKO05] extends DC to repair damaged
polygonal models by reconstructing missing or corrupted regions. Unlike Ju et al’s
DC approach, their method guarantees a manifold mesh by introducing topological
constraints that prevent non-manifold edges from forming.

Instead of relying on minimizing the surface approximation error of the QEF for one
vertex, as in the Ju et al. [JLSWO02| approach, they allow multiple vertices per cell,
particularly in regions of high geometric complexity. This helps in cases where a single
vertex cannot maintain the correct topology.

These vertices are determined by introducing piercing points. These points are located
where the implicit surface intersects the octree cell. To prevent over-smoothing, an issue
with QEF-based DC, a piercing normal is computed to guide vertex placement, ensuring
that sharp features are better approximated.

Pavic et al. [PKO08] extend Bischoff et al’s [BPKO05] topologically constrained DC approach,
further refining vertex placement and ensuring the preservation of sharp features in offset
surfaces. Instead of placing vertices purely by minimizing the QEF across all constraint
planes, they introduce a different method to compute the vertex in a cell, which is
placed more toward feature sensitive regions. The trade-off is that the offset surface is
computed volumetrically via an SDF, as they are not guaranteed to lie on the offset
surface. Therefore, an additional projection step is necessary to adjust the computed
vertices to accurately reflect the offset surface.

2.3 Contributions & Advancements

This thesis builds upon the volumetric offset surface generation approach by Pavic et
al. [PKO0S], extending it to support non-uniform, per-vertex offset distances. Unlike
the original approach, where a uniform offset distance is applied across the surface, the
proposed method allows the offset distance to vary across the surface, enabling greater
flexibility, as the offset surface generation algorithm can now adapt to user-defined
constraints.

While previous volumetric methods for variable offset computations, such as Cao et al.

[CXGT24], have focused on a sampling-based SDF, where offset variations are tied to

triangle-wise or voxel-grid constraints, this work introduces a per-vertex offset assignment.

This results in higher granularity and more precise control.

To interpolate offset values smoothly across the surface, a RBF is introduced. This avoids
artifacts introduced by the discretized triangle assignments. Neighboring vertices are
efficiently located, with spatial indexing using a k-d tree to improve the speed of offset
propagation throughout the mesh.

15

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

2.

STATE-OF-THE-ART AND RELATED WORK

16

The integration of variable offsets into the octree-based framework of Pavic et al. [PKOS]
ensures that self-intersection-free surfaces are generated while allowing a non-uniform
offset.

Furthermore, the DC framework, originally introduced by Ju et al. [JLSWO02] and
improved by Bischoff et al. [BPKO05], is extended to better support non-uniform offsets.
While prior DC methods focused on uniform QEF-based vertex placement or surface
sample computation in Pavic et al. [PKO08], uniform offset generation, this work introduces
a more flexible approach to determine vertex positions. A dynamically determined query
point is computed that adapts locally to both geometric variations and varying offset
values. This ensures that vertex placement aligns with non-uniform offsets, preserving
sharp features without introducing abrupt transitions or artifacts. Zint et al. [ZMRLA23]
follow a variant of DC, where the location of the vertex is guided by the normal deviation
and a quadratic error metric. This ensures feature-sensitive vertex placement but does
not allow for control over varying offset distances.

Additionally, this approach supports the extraction of both inner and outer offset surfaces
while supporting variable offsets. While some offset surface generation methods, such as
Zint et al. [ZMRLA23], only support the generation of the outer offset surface, others,
like the approach of Cao et al. ﬂm, also include inner offset surface generation.
After applying the DC algorithm, the output mesh may contain multiple disjoint surfaces.
To identify the outer offset surface, a graph-based segmentation method is applied to
label and partition the mesh, allowing identification of the largest component as the
outer offset surface.

For the inner offset surface, more filtering is required to remove irrelevant components.
Leveraging spatial indexing with a k-d tree and a signed distance function, components
are correctly identified as either inside or outside the original mesh. This approach
enables the generation of both inner and outer offset surfaces while preserving sharp
features and maintaining smooth transitions.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

CHAPTER

Uniform Offset Approach

This chapter presents the uniform offset approach by Pavic et al. [PKO0§|. This serves
as the foundation for the variable offset approach, which modifies and enables it to
generate non-uniform offset surfaces by choosing vertices to define an offset radius, which
is interpolated across the input mesh. The uniform method enables the construction
of offset surfaces at a fixed distance from an input mesh. Understanding its internal
structure is essential, as the proposed non-uniform offset method builds directly upon
this framework by allowing per-vertex offset distance control.

The uniform offset approach can be broken down into several stages, which are discussed
in detail in the sections that follow. The constant offset algorithm is discussed in detail,
starting with a general outline of what sub-steps are involved, as well as a detailed
overview of the algorithm. The chapter then introduces the adaptive octree structure,
section 3.3, used to efficiently represent space around the surface, followed by a discussion
on how the SDF is computed and encoded into this structure (3.4).

Chapter 5| details DC and explains how the offset surface is extracted from the SDF using
the DC algorithm. Since the initially extracted mesh only approximates the offset surface,
a post-processing step is applied to improve accuracy and quality. This includes vertex
shifting and smoothing 3.5, which helps reduce discretization artifacts and aligns the
mesh with the intended offset geometry. Each of these components plays an important
role in building a pipeline for uniform offset surface generation and sets the groundwork
for the variable offset method.

3.1 Constant Offset

Pavic et al. [PKO08] introduced the Minkowski sum as a foundation to generate a constant
offset surface. The Minkowski sum is a widely used mathematical operation that adds

17

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

3.

UNIFORM OFFSET APPROACH

18

M M®S

Figure 3.1: The Minkowski sum of a line segment M and a circle S with radius §. The
result is a shape M @ S that resembles a capsule. This shape represents the offset surface
at a constant distance 0 from the original line segment.

two sets in Euclidean space, first introduced by J. Serra [Ser83]. This concept is then
extended to generate an offset surface for three-dimensional meshes.

For an offset surface of an arbitrary input mesh M, with a specified offset radius 9, the
Minkowski sum can be defined as M & S = {m+ s|m € M,s € S}, where M is the input
mesh and S a sphere centered at the origin with its radius defined as the offset distance
6. This operation inflates the input mesh by summing up all points in M with all points
of the sphere S, resulting in a set where the boundary corresponds to the offset surface,
which is exactly the constant distance é away from the input mesh.

For example, for a line segment M and a sphere S with radius §, the Minkowski sum
M & S produces a shape that contains all points by moving S along M. In the two-
dimensional case, this creates a shape that resembles a cylinder with rounded caps, or a
capsule, as shown in Figure 3.1.

Unlike the literal sum of two sets, the approach uses distance fields represented by
primitives, namely spheres, cylinders, and prisms associated with vertices, edges, and
faces of the input mesh. The approach calculates the offset surface with the Minkowski
sum and instead of summing the sets, unites the distance fields of the primitives — spheres
for vertices, cylinders for edges, and prisms for faces — based on the minimum distance at
each point.

As a result, the offset surface Mgt can be described as follows: as the set of all points
in R? that lie at a constant distance § from the input surface M,

Mofrset = X €]R3 | }I]Iél]lvl[||X - y” =0 (31)

This represents the surface located exactly at distance § away from the original surface.
In the signed distance field formulation, this can be expressed as follows:

Mg = {x c R3 \ w(x)| = 5} (3.2)

where w(x) is the signed distance function. Positive values of w correspond to points
outside the original surface, negative values to points inside, and zero to points on the
surface.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

3.1. Constant Offset

Defined for a surface S, the SDF can be expressed as follows,

+d(x, S) if x outside
w(x) = { —d(x,9) if x inside (3.3)
d(x,S)=0if x on S

where d(x, S) represents the unsigned Euclidean distance from point x to the surface S:
d(x,5) = min(fx - yl|) (3-4)
yeSs

Then the offset surface can then be understood as the iso-surface of the SDF where
w(x) = 0, and ¢ is the desired signed offset distance.

Geometric primitives are used for distance computation. Spheres, cylinders, and prisms
for the input mesh’s vertices, edges, and faces, respectively. A general description of how
distances from a point x to each type of primitive are computed is given below. Exact
distance calculations are described in the section below 13.4.

Sphere The sphere is used to represent a vertex. The signed distance of a point x to a
sphere centered at c is given by d(x, Sphere) = |||x — c|| — J|, where § is the radius, which

is equivalent to the offset distance.

Infinite Cylinder Used to represent an edge between two vertices of the mesh. The

cylinder is defined as having an infinite extent along both directions of the edge’s line.

This simplifies the geometric distance calculation to the line segment and guarantees
that the offset surface is accurately captured, even beyond the actual edge length. The
offset surface remains bounded by the octree subdivision and only considers distance
within cells that intersect the offset region, cropping the infinite cylinder.

The signed distance from a point x to the axis of the cylinder, defined by the edge
endpoints ey and e; is given by,

d(x,Cylinder) = ||[(x —eg) — ((x —ep) - V)v|| = ¢

where v = IIE:SII is the normalized direction vector of the edge, and § is the offset

radius. This equation computes the shortest distance from x to the infinite line defined
by the edge, and then subtracts the offset radius to get the signed distance.

Infinite Triangular Prism Used to represent a triangular face. The prism is defined
by extruding the triangle infinitely in both directions along its normal vector. This
infinite extent ensures that the prism always covers any region around the face where the
offset distance may be relevant, regardless of the octree cell size or location. The signed
distance is determined by computing distances to the face plane and the side planes
extending from the triangle’s edges and taking the minimum of these distances.

19

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

3.

UNIFORM OFFSET APPROACH

20

The approach of Pavic et al. [PKO08] employs a volumetric representation using an octree
data structure, where spatial subdivision is applied adaptively. A cell is subdivided if it
potentially intersects the offset surface. This is determined by examining the range of the
SDF values within the cell. A cell is refined if the minimum estimated signed distance
to the input mesh M is less than or equal to the offset distance d, and the conservative
estimate of the maximum signed distance is greater than or equal to . This ensures that
only regions near the actual offset surface are refined, improving computational efficiency
while preserving geometric detail.

The subdivision rule is thus defined as follows, using the signed distance values relative
to the original mesh M:

(Zsmin S 0 S ¢max (35)

where ¢min and g, represent conservative estimates of the minimum and maximum
signed distances (to the original mesh M) within a given octree cell. These values are
calculated by evaluating the distance function across the entire cell. Subdivision is
triggered when the offset distance § is within the range [@min, Pmax], which means that
the offset surface w(x) = ¢ potentially intersects the cell.

In Figure 3.2, the octree space partitioning for the uniform offset computation is shown.
The octree cells are adaptively subdivided where the offset surface is located, while empty
regions remain coarse.

This rule ensures that the offset surface potentially intersects the cell, as well as adaptive
refinement. The ¢ and e values, which are the conservative estimates of the
minimum and maximum signed distances within a cell, are calculated based on the
respective geometric primitives that represent the vertices, edges, and faces of the original
input mesh (spheres, cylinders, prisms). For a given point, the signed distance to the
mesh is the minimum of its signed distances to all contributing primitives.

Determining the maximum signed distance for a cell is more complex than determining
the minimum. While the signed distance to a single, finite primitive, such as a sphere, can
be directly evaluated at a cell’s corners to find its bounds, this becomes non-trivial when
considering the overall influence of multiple primitives within a cell. The stems from
the search for the overall signed distance function for the mesh, which is the minimum
of many individual primitive distance functions. Finding a maximum signed distance
across all relevant primitives within an entire cell is not directly available through simple
evaluation. For the infinite primitives (cylinders and prisms) that represent edges and
faces, their infinite extent simplifies the individual distance computations, but makes
finding their global maximum influence within a finite cell more challenging.

Therefore, a conservative estimate for ¢,q; is required, which is robustly found by
evaluating the signed distance function at the corners of the octree cell and taking the
maximum of these values. This approach ensures that every part of the true offset surface
is considered, as the actual maximum signed distance within the cell cannot exceed this

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

3.1. Constant Offset

Figure 3.2: Adaptive octree subdivision for offset surface computation. The Stanford
bunny model is shown with its corresponding octree cells. The varying size octree cells
show which regions contain no information and due to this, remain coarser in the octree
data structure.

conservative estimate. This estimate can result in false positives, cells that are now
marked for subdivision even though they are entirely out of the region of interest, as
illustrated in Figure |3.3. These unnecessary subdivisions are no problem, as they are not
considered in the DC algorithm in the mesh extraction phase, as there is no adjacent
outer cell. The calculation of distances to primitives is discussed in detail in Chapter 3.4
on the signed distance field.

The distances are propagated during the octree subdivision. This guarantees that the
SDF is refined to the lowest levels of the octree. Distances are computed at the parent
nodes and propagated to the child nodes. This equates to the following subdivision rule,

Qschild(w) = min(¢parent (53)’ d)local(x)) (3'6)

This rule ensures that distance estimates become more accurate as the resolution of the
octree increases. This also ensures that detailed or thin geometric features, the level
of refinement is higher and therefore better preserved in the offset surface. Another
advantage of the adaptive resolution of the octree is support for complex geometries, such
as non-manifold input meshes, since the distances are calculated only where geometrically
significant offsets are needed.

21

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

3.

UNIFORM OFFSET APPROACH

22

/outer cell

_[false positive
T2 \ /Tl

inner cell

Figure 3.3: Illustration of false positive cell in offset surface generation. The input mesh,
with triangles 71 and T5, and the offset surface in green. The yellow cell is marked for
subdivision, as the maximum distance at its corners (red) exceeds the offset threshold.
The real maximum is taken at the green vertex. Since there is no adjacent outer cell,
the DC algorithm ignores them, consequently, they are not used for mesh generation.
Reconstructed and extended from Pavic et al. [PKOS§].

When comparing the subdivision rule|3.6/to the earlier subdivision criterion 3.5, it becomes
clear that the first criterion determines when a cell should be subdivided, whereas the
subdivision rule guides how distance values are propagated during the subdivision process.
Together, the rules drive the adaptive refinement behavior of the octree data structure.

The propagation of distances through the adaptive octree data structure makes sure that
the SDF is accurately represented through the lowest levels of the octree. The following
section provides a more thorough explanation of the octree data structure and details
how the SDF is integrated within this framework to generate the offset surface.

3.2 Algorithm Overview

With the foundation of the uniform offset established, the subsequent steps for generating
the offset surface are now defined. The cornerstones of the algorithm have already been
outlined, namely the adaptive nature of the octree and the combination of the SDF with
the use of primitives to calculate their distances to the cells. The result is an octree
defined by multiple levels and leaf nodes which contain the necessary information to
construct the offset surface with the help of the DC algorithm 5. These components work
together to define an offset surface at a constant distance J from the input mesh M.

The algorithm can be broken down into three main stages:

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

3.2. Algorithm Overview

¢ Octree & SDF: An adaptive octree is created, based on the offset distance and
signed distance values.

¢ Dual Contouring: A mesh is extracted from the volumetric data and the SDF
generated in the previous step. This is explained in its own chapter 5.

e Mesh Shifting and Smoothing: Shift mesh vertices to accurately align with the
true offset surface and then refine surface geometry to eliminate artifacts.

Here follows a more thorough description of each stage.

Octree & SDF The process begins by generating the octree based on an offset distance
0 and a maximum resolution, defining the refinement level and stopping condition of the
algorithm, as well as the quality of the output. The input mesh contains information
about the vertices, edges, and faces, including face normals. If face normals are not
present, they are calculated by taking the cross product of two edges of that particular
face. The SDF is embedded into this framework and used to propagate the distance
function to the lowest levels of the octree. For the octree fundamentals, see section 3.3,
and for the SDF calculation, see section |3.4.

Dual Contouring Once the octree is populated with SDF values, the algorithm
identifies surface cells i.e., cells where the offset surface potentially intersects, see equation
3.5. Using the DC algorithm, which works well for volumetric data, a polygonal mesh is
extraced. This is achieved by placing vertices based on the volumetric data, within surface
cells and extracting the data into a mesh. DC produces manifold meshes, generating
a mesh that lies between outer and inner surface cells. The mesh, being constrained
by lying between the range defined by the inner and outer offset distances, is only an
approximation derived from volumetric data of the octree and does not yet represent the
exact offset surface. Since this is used for the uniform and non-uniform approach, it is
explained in detail in chapter 5. Another step is necessary to bring the vertices to the
correct position on the offset surface.

Mesh Shifting and Smoothing In the DC algorithm, generated mesh vertices are
shifted to the sample points of the surface cell, which is the true offset surface. The
tangent plane of M, situated at the point of the minimum distance, is shifted to the
offset surface in the direction of the minimum normal. To achieve an accurate placement,

a surface sample is calculated by projecting the cell center to the shifted tangent plane.

For large offset distances or steep local geometry, the projection may fall outside the cell
bounds. In such cases, to ensure sample points remain within valid geometric bounds,
points lying outside the cell are clamped to be smoothed in the final step.

In the final step, the offset surface mesh is smoothed. Using the input mesh M, the
smoothing operation uses a relaxation force and an offset force to pull the vertices of
the offset surface to a weighted average of those two target points. This ensures that no
artifacts or irregularities remain in the offset mesh.

23

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

m 3ibliothek,
Your knowledge hub

3.

UNIFORM OFFSET APPROACH

24

Figure 3.4: All eight octree octants, numbered from one to eight, starting with the
top-left corner, in counterclockwise ordering. The octant number six is obstructed by the
other nodes and situated in the lower left section, under octant two.

3.3 Octree

The octree data structure and its application in offset distance calculations are described
in this section. The octree data structure is a hierarchical tree structure used to partition
three-dimensional space recursively into smaller cells, also known as nodes. Each iteration
creates eight children of equivalent size, these partitions are called octants. In Figure |3.4
all eight octree octants can be seen.

3.3.1 Octree Fundamentals

An octree is created from a single cube, which is called the root node. Subdivision of cells
continues until a pre-condition is met. This could be node occupancy, where subdivision
halts when a certain occupancy of a specified number of input primitives (vertices, edges,
faces) for a cell is met, to ensure that primitives are better distributed among child nodes.
Another example is with collision detection, where subdivision stops when the object
in question is no longer in close proximity to the cell. Or simply when the maximum
level or minimum cell size specified is reached. With each subdivision, the nodes get
progressively smaller until the end of the subdivision is reached. These nodes, namely
nodes without a child, are called leaf nodes. As opposed to uniform regular grids, which
separate a three-dimensional space into equally sized compartments, the octree can be
used to adaptively subdivide three-dimensional space. This becomes useful when you
want to refine space around input geometry where there is a lot of empty space. Then,
only big cells are created, and subdivision only occurs where information is available.
Resolution is higher in regions with fine geometric detail, such as sharp corners or thin

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

3.3. Octree

features, which is important for offset surfaces, where these details are at risk of being
smoothed or resulting in self-intersections. Adaptive octrees conserve space by avoiding
the creation of information in empty regions.

Other applications are level-of-detail management in Computer Graphics, where detail
close to the camera is adaptively subdivided, and for terrain rendering, where distant
areas require less detail. A similar example is collision detection, where the algorithm
adaptively focuses on regions where the objects are close to, subsequently reducing
computational overhead.

With the help of adaptive subdivision, the octree enables efficient computation of a
distance field. This ensures that the octree refinement is only taking place in regions
where the offset surface is generated. This approach allows for the propagation of
distances to the smallest cells and makes sure to only refine where the offset surface is
generated, preventing unnecessary computation and preserving fine details.

3.3.2 Application in Distance Computation

Similar to Pavic et al. [PKO08], the octree data structure is used in this thesis to efficiently
manage spatial information and identify regions containing the offset surface. An octree
node represents a cubic spatial region. An octree node maintains a list of indices to the
primitives (vertices, edges, and faces) of the input mesh that are relevant for computing
the offset surface. A primitive is considered relevant if it is the closest primitive to any
point within the cell, or if it intersects the cell’s bounding box. This avoids storing
redundant geometric data and allows primitives to be referenced by multiple octree nodes
if they exist across cell boundaries.

These relevant primitives are used to compute the SDF. The SDF is a scalar field,
represented by the shortest distance to the nearest surface of the input geometry. If the
point lies inside the surface, the sign of the distance is negative and positive if outside of
the surface. With this SDF, used in other applications within geometry processing and
offset surface generation, spatial proximity information can be easily encoded. A sphere,
cylinder, or prism represents the distance function in this method for generating offset
surfaces.

The refinement of the octree for distance field computation follows a top-down subdivision
scheme. Larger parent cells are progressively refined into smaller child cells. During
this process, distance information becomes more refined as the cells get smaller. This
approach ensures that the accuracy of the SDF increases towards the lower levels of the
octree.

The root node of the octree is initialized with a reference to the global input mesh, the
primitive indices, the offset surface distance § and the maximum level, which represents
the maximum resolution of the octree. Each octree node stores a list of indices of the
mesh’s primitives (vertices, edges, or faces) that a considered relevant for that particular
node.

25

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

3.

UNIFORM OFFSET APPROACH

26

During offset surface generation, subdivision occurs adaptively, based on a distance
criterion: if a node’s distance is within the range defined by the minimum and maximum
offset distance (¢min and ¢pqz) to the original input mesh M, the node undergoes further
subdivision. This method ensures that only regions near the offset surface are subdivided,
which helps preserve fine detail while representing empty or distant regions more coarsely.
At each subdivision step, ¢min and ¢me: values for a given node are computed by
evaluating the signed distance to only the primitives relevant to that specific octree node.
This avoids re-traversing the entire mesh, enabling efficient distance propagation while
ensuring that details are accurately preserved down to the deepest level of the octree.

3.4 Signed Distance Field Computation

With the help of an adaptive octree data structure, an SDF is generated for the input
mesh. Due to its adaptive nature, the octree only subdivides cells to a finer resolution in
regions near the mesh surface.

Instead of computing point-to-primitive distances, the method determines a single SDF
value for each octree cell by considering the cell’s region in three-dimensional space and
the closest mesh primitives. This approach accounts for various relationships between a
given octree cell and the relevant primitives, ensuring accurate distance calculation in all
cases. Specifically, the algorithm is designed to handle the following cases:

e Primitives intersecting a node: A primitive may pass through a node, which means
it partially intersects the cell’s volume

e Primitives completely outside of the node, but influencing it: A primitive might
be entirely outside a node’s boundaries, but still be the closest primitive to points
within that node

¢ A node enclosing part of a primitive: A node might encompass only a segment of
an edge or a portion of a face

This has advantages, in particular when dealing with cases where the geometry of the
surface is curved or irregular, which means preserving fine details of the input mesh
in the offset surface as opposed to simple point-based approaches. For each cell, the
minimum and maximum distances to the primitive are stored. When creating the offset
surface, the specified offset distance is added to the minimum distance and subtracted
from the maximum distance to define the new surface boundaries.

The distance computations between a node and each primitive, e.g., spheres, cylinders,
and prisms, are detailed in this section. For the maximum calculation of the cell-to-
primitive distance, the distance can be conservatively taken from the primitive to the
corners of the octree cell. This is because the corners represent the extreme points that
define the cell’s extent in three-dimensional space. This approach simplifies the maximum

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

3.4. Signed Distance Field Computation

distance calculation compared to evaluating the distance function across a dense sampling
of points within the entire cell. This assumption works well for weakly convex objects, as
this is the case with the primitives in our case, which are always assumed to be a planar
polygon. This allows us to avoid more complex case analyses for finding the maximum
distance.

For the minimum computation, it is not sufficient to take the distances to the corners
of the cell, since the minimum can also lie on the interior of the edges or faces of the
octree node. If we consider the isolines of a distance field, where all points have the
same distance to the input geometry, and look at our primitives, for instance, the sphere
can be viewed as contour lines, where all points are radius ¢ away from the center of
the sphere. Similarly, for a polygonal mesh, the contour lines form iso-surfaces around
the input surface, defining the offset surface. Since the polygonal mesh is composed of
discrete primitives, the distance field can now be decomposed into regions based on the
geometric contributions of their primitives: vertices, edges, and triangles. This simplifies
the overall distance calculation by reducing it to a set of specific, well-defined geometric
problems. This decomposition means fewer general cases need to be considered for
distance calculations, making the computation also more efficient.

To compute the offset surface, the minimum point on the cell boundary and a normal

vector pointing to the offset surface’s base point need to be calculated and stored as well.

This is computed at the same time as the minimum distance is found. The minimum
point and the normal vector are used later, after the mesh extraction phase, in the mesh
shifting and smoothing step detailed in the next section 3.5. To calculate this minimum
point, additional computational steps are introduced. For the offset surface extraction
step, the minimum point and its respective minimum normal are only relevant if the
cell, that is used as a sample, is a boundary cell. This means that for all interior cells,
where the minimum distance is set to 0, as detailed below, the primitives lie within the
cell or are touching it, making the minimum point calculation redundant. Disregarding
this computation reduces some of the computational overhead. As a result, only the
minimum point calculation is considered when the minimum distance is greater than 0.

3.4.1 Sphere Distance Computation

To compute the distance between a sphere (with center v; and radius 0) and an octree
cell, different cases must be considered based on the sphere’s surface relationship to the
cell. The following Table 3.1/ gives an overview of how to calculate the minimum (@)
and maximum (¢,q;) signed distances for the cell relative to the sphere’s surface.

The adaptive octree discretizes the distance field to the original input mesh M. For each
cell, the minimum and maximum distances (@pin and ¢mqz) that occur within its bounds
are evaluated. Figure 3.5 illustrates the computation of these bounding distances for an

octree cell (black square) with nearby vertices of the original mesh (blue points v;, v, v).

The length of the lines connecting the orange ¢ markers on the cell boundary to the
vertices represents these distances. The minimum and maximum distances are computed

27

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

3.

UNIFORM OFFSET APPROACH

28

.® .~

~~~~~~

Figure 3.5: The different spatial relationships between an octree cell (black square) and
the original input mesh M. The blue points (v;, vj, V) represent vertices of the input
mesh. The minimum distance, ¢, represents the shortest distance, with a dotted line,
to the nearest point on the input mesh (e.g., v;). The length of the line is the distance
for that specific point on the cell. The overall cell ¢,y is the global minimum of these
distances over the entire cell. The maximum distance ¢, (bottom-left) is approximated
by taking the distance from the octree cell. The dashed blue circles, centered at the input
mesh vertices and with radius J, conceptually illustrate the Minkowski sum operation.
The final offset surface is defined as the iso-surface where the distance to the original
mesh equals §. Fully interior case omitted for clarity.

depending on whether the sphere lies outside or is partially overlapping. Relative to the
sphere’s position, the minimum is taken either from cell corners, edges, or planes of the
cell. The dashed blue circles, with radius ¢, show how the constant offset distance defines
the final offset surface. The distances ¢y,in and @pq, are then used to determine if a cell
needs further subdivision or if it’s inside/outside the § offset region.

To determine the minimum signed distance ¢,,;, from an octree cell to the sphere’s
surface, it is necessary to compute the signed distance from the sphere’s center c to the
closest point on the cell’s boundaries (faces, edges, or corners). This involves finding the
closest point on the cell’s axis-aligned bounding box to the sphere’s center. These can be
summarized as follows:

1. If the sphere’s center c is inside the cell: The closest point on the cell’s boundary
to ¢ is used, and the minimum signed distance (¢p,) is set to 0



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

3.4. Signed Distance Field Computation

0. Found by checking
closest point on cell’s
boundary

Case Relationship to | dmin Omaz

Sphere Surface
Surface Inter-| Sphere surface passes | Min signed distance | Max signed dis-
sects Cell through the cell to sphere surface is < | tance to sphere

surface (i.e., cell
corner)

Cell Fully In-
side Sphere

All points in the cell
are inside the sphere

Min signed distance

Max signed dis-
tance

Cell Fully Out-

side Sphere

All points in the cell
are outside the sphere

Min signed distance

Max signed dis-
tance

Table 3.1: Overview of octree cell-to-sphere signed distance computation. Figure 3.5
shows cases where the center of the sphere lies outside the octree cell.

2. If the sphere’s center c is outside the cell: The closest distance from the cell to c is
determined. This closest point can lie on a face, edge, or corner of the cell:

e Cell Corners: If c is closest to a cell corner, this is implicitly covered by the
edge cases, as the closest point on an edge could be one of its endpoints (a
corner)

o Cell Edges: The shortest distance from ¢ to each cell edge is computed

e Cell Faces: Compute the perpendicular distance from the sphere’s center c
to each of the six planes defining the cell’s faces. If the projection of c falls
within the bounds of a face, consider as a minimum distance candidate

The minimum of all these calculated distances, after subtracting the sphere’s radius
0, results in the ¢,,;, value for the cell. For ¢,q., it is conservatively determined by
computing the signed distance function at the eight corners of the octree cell and taking
the maximum of these.

3.4.2 Cylinder Distance Computation

For the distance computation between the cylinder and the cell, similar to the sphere
distance computation, different cases need to be considered, but the cylindrical shape’s
properties need to be taken into account. The cylinder is defined by its axis, consisting
of the primitive edge points e; = (0, %0, 20),€; = (21, ¥1, 21) and the edge’s directional
vector d = (e; — e;) and their radius 0.

In Table 3.2, an overview of the distance computation cases is provided. For the maximum
signed distance ¢4, the calculation stays the same, since we are only interested in the
maximum of the minimum distances, regardless of the node-to-cylinder relationship. In
contrast, the minimum signed distance ¢,,;, calculation cases vary, as outlined in Table
3.2l

29



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

3. UNIFORM OFFSET APPROACH
€;
Pmin

Figure 3.6: Different cell-to-cylinder minimum signed distance calculation cases. The
cylinder is represented by edge segments e;, e; with radius §. The minimum distance,
Omin, is found at the orange points, between the cell boundary and the cylinder, depending
on whether the cylinder lies inside, intersects, or remains outside the cell. Projected
distances are shown with the dotted lines.

Case Relationship to Cylinder | ¢n

Surface

Surface Intersects | The cylinder’s surface passes | Min signed distance to cylin-

Cell through the cell der surface is < 0

Cell Fully Inside | All pointsin the cell are inside | Min signed distance

Cylinder the cylinder

Cell Fully Outside | All points in the cell are out- | Min signed distance

Cylinder side the cylinder.
Table 3.2: Overview of octree cell-to-cylinder signed distance computations. Figure
shows different cases of how the cylinder can intersect with the cell.
As with the spherical case, the minimum signed distance ¢y, is calculated based on
surface intersects or is spatially related to the cell. Figure visualizes various cases,

30




Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

3.4. Signed Distance Field Computation

showing the octree cell relative to multiple cylindrical primitives, represented by an edge
with endpoints e;, e; and radius 0. The orange points and dashed lines in the figure mark

locations where the minimum signed distance ¢,.;, to the cylinder’s surface is found.

These are determined by projecting the cylinder intersection points onto the closest point
on the cell’s surface, either the cell plane, edge, or corner.

To determine ¢,,;, for a given octree cell relative to a cylinder, several geometric cases
are considered. This involves calculating the shortest signed distance from points within
the cell to the cylinder’s surface. These cases are calculated as follows:

1. Cylinder surface intersects or is inside the cell: If the cylinder’s axis (the edge e;e;)
passes through the cell, or if the cylinder’s surface intersects the cell, the minimum
signed distance ¢y, is set to 0

2. Cylinder surface is outside the cell: If the cylinder’s surface does not intersect the
cell, the minimum signed distance ¢,,;, will be positive. The closest distance is
found by checking the distances from the cylinder’s surface to the face, edge, or
corner of the cell:

e Cell Corners: Compute the shortest perpendicular distance between the
cylinder’s axis (the line segment e;e;) and each of the eight corners of the
octree cell

e Cell Edges: For each edge of the octree cell, compute the shortest distance
between that edge and the cylinder’s axis. Cases where the cylinder’s axis
is parallel to a cell edge are implicitly handled by the cell corners case, as
perpendicular distances are the same

e Cell Faces: For each plane, defining the faces of the octree cell, compute the
shortest distance from the cylinder’s axis to that plane. Project the cylinder’s
endpoints e;, e; onto the plane and check if the projected points lie within the
face boundary

3.4.3 Prism Distance Computation

The prism also requires calculating the minimum and maximum signed distances between
the octree cell and the primitive. This calculation first involves examining the specific
geometric properties of the prismatic shape.

The prism is defined by a triangular face of the mesh, F' = (vg, vy, v2). This prism extends
infinitely in both directions along the normal vector ng,ee, creating a three-dimensional
bounding volume. It consists of two parallel triangular faces, +0 from the extended
triangular face, and three rectangular planes, formed by the connecting edges of the top
and bottom faces. Let p € R3 denote a point (e.g., a corner or edge midpoint of the
octree cell) for which the distance to the prism is to be evaluated. The prism plane can
be defined as follows,

31



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

3.

UNIFORM OFFSET APPROACH

32

Nface - (p - Vi) =0 (37)

The prism sides with its edge directions (v; — v;_1) and their normal vector, which can
be defined as

Ngide; = Nfgee X (Vi - Vifl)v fOl", 1= 0, 1a 2 (38)

the side plane can now be defined as

Ngige, (P — Vi—1) =0 (3.9)

Table |3.3| provides an overview of the distance computation cases, depending on whether
the prism lies inside or outside the cell. As with the previous primitive distance computa-
tions, the calculation steps differ based on their relationship. For the maximum distance,
the calculation remains the same for both inside and outside cases. The distance is always
measured from the corners of the octree cell to the prism sides.

For the minimum distance calculation, different cases must be considered. An overview
is given in the Table 3.3l

Case Relationship to Prism | ¢,
Surface

Surface Intersects
Cell

The prism’s surface passes
through the cell

Min signed distance to prism
surface is <0

Cell Fully Inside

All points in the cell are inside

Min signed distance

Prism the prism
Cell Fully Outside | All points in the cell are out- | Min signed distance
side the prism

Prism

Table 3.3: Overview of octree cell-to-prism signed distance computations. In Figure 3.7,
several cases of minimum distance calculation are shown.

Figure 3.7| visualizes the minimum distance cases between the prism and the octree
cell. Several cases are shown where the prism’s surface either partially overlaps the cell
or touches the cell on edges or corners. The orange points in the figure represent the
locations for the calculation of the minimum signed distance (¢,:n) to the prism’s surface
(the yellow plane representing the original face, extended by 446 into the prism). The
extension of the prism along its face normal by 44 is also shown. The fully interior case
and the maximum case have been omitted for clarity.

To determine the minimum signed distance ¢,,;, from an octree cell to the prism’s surface,
one must evaluate the closest point on the prism’s surface to the cell. This involves
checking distances from the cell’s corners, edges, and faces to the various parts of the
prism:



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

m 3ibliothek,
Your knowledge hub

3.4. Signed Distance Field Computation

DPmin

Figure 3.7: Minimum distances calculations between a prism and an octree cell. The
prism, created by extruding a triangular face (yellow) along its normal vector by the offset
distance +4. Minimum distances ¢, occur at projections or intersections between prism
planes, edges, and octree cell corners, edges, or planes, depending on spatial relation.

1. The prism’s surface intersects or encloses the cell: If the triangular face or its
extruded volume passes through or fully contains the cell, the minimum signed
distance ¢y is set to 0

2. The prism’s surface is outside the cell: The minimum signed distance ¢, is
positive, representing the shortest signed distance from the cell to the prism’s
surface. The closest point is found as follows:

o Candidate Intersection Points: Potential closest points are found at intersec-
tions between the cell’s edges and the prism’s side planes, or between the
prism’s vertical edges and the cell’s faces. For any intersection point, its
absolute distance to the main prism plane is calculated as a candidate for

¢min

e Cell Corners to Prism Planes: The signed distance from each of the cell corners
to the prism’s main plane and its three side planes is evaluated. If a corner
lies outside the prism’s side boundaries, its distance is computed by projecting
it onto the triangular face. If it lies within the prism’s side boundaries, its
distance is the distance to the main prism plane. The minimum of these
distances is then the designated ¢,n

33



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

3.

UNIFORM OFFSET APPROACH

34

Figure 3.8: Offset mesh generated by DC after the extraction phase. The magenta and
blue boxes highlight areas of increased resolution, where the DC algorithm adaptively
subdivided the octree to prevent ambiguous topology. Enlarged views are shown on the
right.

The overall ¢,,;, for the cell is the minimum of all these calculated signed distances
from the prism’s surface to the relevant cell features. These computation accounts for all
complex interactions between the cell and the prism, ensuring an accurate SDF.

3.5 Mesh Shifting and Smoothing

Following the DC algorithm, described in more detail in Chapter |5, we are left with a
mesh generated from the volumetric data of the octree. Figure [3.8 shows the resulting
mesh, with two regions of interest featured and enlarged for closer inspection.

In the DC algorithm, each vertex is placed at the geometric center within a cell intersected
by the offset surface, provided it meets all vertex requirements. Cells are easily identified,
as they are leaf nodes where the offset distance § is between the local minimum and
maximum distance to the input geometry, that is, 0, < 6 < Opmaz. While these vertices
are determined based on volumetric cell information, this placement strategy means they
may not align precisely with the true offset surface, leading to the boxy look shown in
Figure 3.8

Another step is needed to shift the vertices in the direction of the offset surface, previously
defined by the SDF. In the shifting step, when projecting the vertices onto the surface,
fine details and features of the offset surface are also preserved, especially in the areas
where the DC approximation is deviating from the desired offset surface. As a result,
it is necessary to introduce the vertex shifting step. The rule defining vertex shifting is
described in the following section. After the DC algorithm and the vertex shifting step,



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

3.5. Mesh Shifting and Smoothing

some irregularities, such as non-smooth transitions between cells, can result in a mesh
that needs to be corrected. Smoothing removes these artifacts, makes the mesh more
visually appealing, and helps maintain manifold consistency. This step is also examined
in more detail after the vertex shifting method, and is necessary to produce the final
accurate representation of the offset surface mesh.

3.5.1 Mesh Shifting

The result of the DC algorithm, as explained above, is a mesh that lies between the range
defined by the inner and outer boundaries of the offset distance. To construct the offset
surface, a surface sample, a vertex that lies on the offset surface must be computed. The
SDF provides all necessary information for creating a surface sample for each cell. The
minimum distance d, the minimum point p, and the minimum normal n of the SDF of
each cell are used to define the tangent plane of the input mesh, adjusted by the offset
distance 9,

n‘z=nlp+d6—d (3.10)

this defines a plane parallel to the tangent plane of the original mesh, but positioned
such that it represents the local offset surface. The term § — d acts as a shift along the
normal, moving the plane from the point p to the desired position on the offset surface.

The center ¢ of the octree cell is projected onto this newly defined plane, which is used
to define the refined surface sample:

d=c+nnl(p—c)+6—d (3.11)

This works well when the offset surface is smooth and locally flat, with no abrupt changes
in direction or significant curvature. Where the offset surface has a high curvature or
sharp features, for instance, near corners or edges of the original mesh, the assumption of
local flatness fails. Additional adjustments are needed to correct for those cases where the
projected point ¢’ could deviate from the offset surface or is completely outside the cell.
By clamping the surface sample to the cell boundaries, it is ensured that the projected
point does not deviate too far from the input mesh. This safeguard restricts points to
the valid boundaries of the cell, minimizing geometric artifacts. The remaining artifacts
are smoothed out in the mesh smoothing step, detailed in the next section.

3.5.2 Mesh Smoothing

From the mesh shifting step, geometric artifacts can be introduced due to the clamping
of surface samples to cell boundaries, when the vertices in the shifting step may not
fully represent the offset surface. High-curvature areas are another hot spot for artifacts,

where smoothing can help move the vertices into a more visually appealing position.

This means that vertices are not guaranteed to lie directly on the offset surface. The

35



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

3.

UNIFORM OFFSET APPROACH

36

smoothing step is introduced to reduce artifacts and create a visually and geometrically
smooth offset surface.

The effect of the mesh smoothing step is visualized in Figure 3.9. Compared to the initial
result of DC (see Figure 3.8), the vertices are now placed correctly to better approximate
the offset surface. The Figure highlights two regions, marked in magenta and blue.
Geometric artifacts caused by octree transitions and clamping have been significantly
reduced. The enlarged boxes on the right show how vertex shifting and smoothing affect
even the newly created subdivided cells by DC, to create a uniform mesh.

In the smoothing operation, two forces are used to guide the vertex into its end position.
The relaxation force redistributes the vertices to improve local uniformity and ensures
that there are no abrupt changes in the density of the vertices. This force pulls each
vertex v towards v/, the center of gravity of its 1-ring neighborhood, which is a set
of directly connected vertices that share an edge with v for which a new position is
computed. With this restriction, focusing only on adjustments within a controllable area,
the new position will not alter the global mesh structure or disconnect existing vertices.
The target position v’ resulting from this relaxation influence is defined as:

1
==Y 3.12
\% n : V; ( )

The offset force is used to maintain the position of the vertices on the offset surface,
counteracting the relaxation force, so that the vertices do not deviate too far from the
intended offset distance. This force pulls v towards v”.

A base point b is needed from the input mesh M, to calculate the minimum distance to
the point v, which has its 1-ring neighborhood defined as vy,...,v,. A k-d tree is built
on the complete input mesh to find the base point with the minimum distance to v. The
target position v” representing the offset force is defined as:

v—Db

V' =b+i—
Iv bl

(3.13)

This smoothing operation uses a weighted average of those newly calculated vertices to
move each vertex in the new direction. The weighted average approach ensures a visually
smooth result while also preserving offset accuracy. In this thesis, a value of o = 0.5 has
been used, as this appears to the author to be the best visual value and a good balance
between the two forces. The newly calculated point can be defined as,

v=>1-aV +av’ (3.14)

This ensures that the vertices are balanced and that irregularities, such as overlapping
triangles, are smoothed out, and the result is a manifold mesh. The smoothing step
also helps in creating a more watertight mesh by improving the alignment of vertices,



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

3.5. Mesh Shifting and Smoothing

Figure 3.9: The smoothed offset surface mesh after vertex shifting and the relaxation
and offset forces have been applied. Compared to the non-smoothed mesh in Fig.
vertices have been shifted, and artifacts caused by clamping and cell transitions have been
minimized. The enlarged regions show how vertex placement has improved concerning
both surface smoothness and offset accuracy.

thereby reducing the likelihood of gaps or small openings that might occur at shared cell
boundaries during the initial DC algorithm or clamping step. While these smoothing
operations significantly enhance the visual quality and connectivity, they are heuristic
methods and do not strictly guarantee topological properties like manifoldness or a
complete watertight mesh.

37



“jayiolgig usipn N1 1e wud ul ajge(rene si sisay) syl Jo uoisian [euibuo panoidde ay | < any 38pajmoust InoA
JeqgbBnyian yaylolqig usipn NL Jap ue 1si 1agrewoldiq Jasalp uoisiaAfeulBuQ aponipab ausiqoldde aiqg v_U:#O__ﬁ—_m



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

CHAPTER

Non-Uniform Offset Approach

This chapter presents an extension of the uniform offset method to handle non-uniform
offset distances across the surface. A key challenge in generating such surfaces lies in
defining a continuous, spatially varying offset field across the entire input mesh without
requiring the user to specify an offset value for every single vertex. To address this, our
approach utilizes a set of user-defined offset distance values at selected seed vertices.
These values are then smoothly interpolated across the rest of the surface using the radial
basis function (RBF) interpolation method. The same framework as used in the uniform
approach will be reused and adapted to suit the changes to the variable offset method.
The variable offset concept is described in the section below and then the corresponding
algorithm modifications are detailed.

4.1 Variable Offset

The concept of variable offsets involves generating offset surfaces at a non-uniform
distance from the input surface. In contrast to uniform offsets, variable offsets support
more flexible geometric adaptability. Instead of applying a single global offset distance ¢,
variable offsets allow individual distance values to be specified for different regions of
the input mesh. This flexibility allows better support for geometrically important areas,
such as preserving fine details that might be lost or distorted with a uniform offset, or
enabling meshes with varying thicknesses.

The variable offset approach assigns individual offset values only to a small set of user-
selected seed vertices. To propagate these discrete values into a continuous varying
offset field across the entire surface, an interpolation method is required. The RBF
interpolation is used for this purpose.

A requirement for RBF interpolation is a distance metric between points on the surface.
The ideal metric is the geodetic distance, which is the shortest path on the continuous

39




Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

4.

NON-UNIFORM OFFSET APPROACH

40

surface. Its direct computation is complex and computationally intensive. Therefore, we
approximate the geodetic distance using the graph distance on the input mesh, which is
defined as the shortest path along the mesh’s edges. This graph distance is computed
using Dijkstra’s algorithm. Since this is an approximation, this can lead to deviations.
For instance, at large or irregularly shaped triangles. The graph distances are used as
the input distance metric for the RBF interpolation, ensuring smooth transitions and
avoiding abrupt changes in thickness in the resulting offset distance field.

A full SDF for a non-uniform offset surface is complex, computationally expensive, and
challenging to define consistently. Unlike the uniform approach, where octree cells are
subdivided based on precise SDF bounds (¢min, @maz), the non-uniform approach utilizes
a less restrictive subdivision criterion. Instead, it primarily relies on simpler intersection
computations between octree cells and the input mesh primitives. Direct distance-based
classification is difficult to achieve, since the offset varies locally and may change abruptly.
This makes it easy to wrongly classify cells or miss surface transitions. In the conservative
approach, to subdivide all cells that intersect the offset region, the algorithm ensures that
all inside and outside cells are captured. This provides a robust foundation for accurate
DC mesh extraction and preserves the correct topology of the non-uniform offset surface,
although introducing an increased number of cells and an additional post-processing step.

Due to the less restrictive, intersection-based subdivision rule used in the variable offset
approach, the initial mesh often contains cells corresponding to both inner and outer offset
surfaces, among other algorithmic artifacts. An additional extraction step to correctly
isolate the desired inward or outward offset components from the generated superset of
surfaces is therefore introduced.

Sharp features, such as high curvature or self-intersections, are handled in the same
way as in the uniform offset by using an adaptive octree. An important difference from
the uniform approach is that the variable offset method is solely based on intersection
computations between octree cells and the input mesh primitives to identify relevant
cells. For mesh extraction, the same DC algorithm is used to create a manifold mesh,
as with the constant offset, vertices need to be shifted and smoothed to ensure correct
placement on the offset surface.

4.2 Algorithm Overview

With the main idea of the non-uniform offset established, the steps for generating the
offset surface are now defined. The overall framework for computing variable offset
surfaces consists of five stages, similar to the uniform case but adapted to support
non-uniform distances. These components work together to define a non-uniform offset
surface based on multiple per-vertex defined distances d,, from the input mesh M.

The algorithm can be broken down into five main stages:

« RBF Interpolation: Define and propagate varying offset distances across the



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

4.2. Algorithm Overview

mesh.

¢ Octree Subdivision: Subdivide adaptively using intersections with variable
primitives.

¢ Dual Contouring: Use Dual Contouring to extract a mesh from surface cells.
This is explained in its own chapter 5.

¢ Mesh Shifting and Smoothing: Similar to the uniform offset approach, adapted
for interpolated offset distances.

o Offset Surface Extraction: Due to the less restrictive subdivision rule, more
components are created, which need to be correctly extracted as inner and outer
offset surfaces.

RBF Interpolation To generate a continuous, spatially varying offset function from
user-defined values at selected mesh vertices, RBF interpolation is used. The initial offset
values are only specified at a few selected vertices, and then the RBF creates a smooth,
continuous field across the entire mesh surface. This can then be evaluated at any point
on the mesh to find the corresponding offset distance. Since RBF requires a meaningful
distance metric on the input surface, the ideal geodesic distance is approximated with a
graph distance, calculated with Dijkstra’s algorithm along the edges of the mesh. This
metric, even though it is an approximation, captures surface proximity well enough for
smooth and consistent interpolation across the mesh.

Octree Subdivision For the variable offset approach, the octree subdivision criterion is
modified. Instead of evaluating exact SDF values, subdivision is triggered by intersections

between octree cells and offset primitives that reflect the spatially varying offset distances.

This is needed as a cylinder assumes a constant radius along the edge it represents,
whereas the cone allows the radius to vary linearly along its edge. Similarly, for the prism
case, the variable offset creates two triangles, into the positive and negative dimensions
of the variable offset distance. If any of these variable primitives intersect a cell and the
maximum subdivision level is not reached, the parent node will be further subdivided.

This intersection-based rule is less restrictive than the SDF-based approach of uniform
offsets. This causes the octree to refine not just the offset surface, but rather the entire
volumetric region spanning the original mesh and its variable offset distances. This results
in the subdivision of cells that may be on either the inner or outer side of the original
mesh, and potentially within the offset volume. With the help of the DC algorithm, a
greater set of surface cells is generated, leading to more mesh components. To handle
these potentially unwanted surfaces, an additional post-processing step, detailed in section
4.6/ as "Outer and Inner Offset Surface Extraction", is introduced.

Dual Contouring For mesh extraction, a variant of DC is used, the same as with the
uniform offset approach. To successfully extract a mesh, offset surface cells need to be

41



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

4.

NON-UNIFORM OFFSET APPROACH

42

identified in the adaptive octree. In the uniform approach, a surface cell was identified by
its distance relative to the input primitives. If it was within range of the offset distance,
the node is defined as the cell that intersects with the offset surface. Due to the weaker
subdivision rule, this definition changes. The nodes that contain no primitive are now
designated outside offset surface cells, whereas nodes that contain no primitive and are
leaf nodes are now designated inside surface cells, from which the outer and inner offset
surfaces are extracted, respectively.

For mesh extraction, a variant of DC is used, the same as with the uniform offset
approach. To successfully extract a mesh, offset surface cells need to be identified within
the adaptively subdivided octree. In the uniform approach, a surface cell was identified
by its minimum and maximum SDF values spanning the constant offset distance. For
the variable offset method, due to the weaker, intersection-based subdivision, the octree
contains a larger set of cells that are of importance in the overall offset envelope. In the
variable offset method, surface cells are identified based on the presence of intersecting
primitives. Inside cells are those that contain contain at least one intersecting primitive
and are a leaf node. These cells are located within the original input mesh’s volume.
Outside cells are those that contain no primitive, they are located outside the original
mesh’s volume. The DC algorithm then uses these inside and outside labels to extract
the surface.

Mesh Shifting and Smoothing FEach extracted mesh vertex is projected onto the
actual offset surface by computing the appropriate offset along the normal at its closest
point on the input mesh. Due to varying offsets, interpolation between vertex, edge, or
face offset distances is required. Finally, smoothing is applied using a combination of
relaxation and offset forces, ensuring a clean and artifact-free result.

Offset Surface Extraction Due to the non-uniform offset’s weaker, intersection-based
subdivision rule, the DC algorithm might generate a mesh with multiple components,
including both desired offset surfaces and algorithmic artifacts. An additional extraction
step is introduced to isolate the correct outer and inner offset surfaces. For the outer
offset, the largest connected component of the generated mesh is identified and extracted
using a graph-based search method.

Inner offset extraction requires a more involved filtering process. The components that
are identified as outside the original input mesh with the help of a signed distance function
are discarded first. To ensure only relevant inner surfaces remain, components whose
vertices deviate significantly from their interpolated variable offset distance are discarded
as well.

4.3 Interpolation with Radial Basis Function

After the user specifies the variable offset distances at a specific user-defined set of input
vertices, an additional step is needed to create a continuous offset distance field over the



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

4.3. Interpolation with Radial Basis Function

Figure 4.1: Visualization of the RBF interpolated scalar field on a triangular mesh
approximating a sphere. The spectrum transitioning color mapping quantifies the
interpolated function values across the surface. The continuous color progression observed
demonstrates the spatial smoothness of the interpolation.

input mesh, which is detailed in this section. The initial offset distances must be smoothly
propagated along all vertices of the input mesh. The approach needs to be able to deal
with irregularly distributed or sparse offset values. With the help of Dijkstra’s algorithm,
which provides a robust shortest-path solution for vertex-based distance propagation, a
distance graph can be created from the specified input vertices.

To compute a smooth, spatially varying offset across the mesh, we use the RBF interpo-
lation. The distance metric is approximated with the graph distance (shortest path along
edges), computed by Dijkstra’s algorithm. This introduces some approximation error,
as the path is constrained by the mesh edges. For instance, if the mesh contains long
triangles, the graph distance between two vertices in such a triangle can be significantly
longer than the true geodesic distance, which would be the straight-line path across
the flat surface of the triangle. This difference can lead to small inaccuracies in the
interpolation. By using a Gaussian function (or Gaussian kernel) as its basis function,
the RBF controls the influence of specific vertices based on their proximity.

Figure 4.1 illustrates the interpolation of a scalar function on a triangular mesh using
the RBF. The values are computed from a sparse set of seed values and then smoothly
propagated across the mesh. The color gradient shows that the transition between colors
is smooth, which shows that the RBF successfully interpolates the offset values across
the mesh.

43



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

4.

NON-UNIFORM OFFSET APPROACH

44

4.3.1 Interpolation of a Scalar Function on a Triangle Mesh

The problem can now be defined as follows: the known scalar values, denoted as f(vg),
are assigned to a small subset of the vertices vg(k =1,...,N) in a triangle mesh. The
goal is to assign a value f(v;) to every vertex v; in the input triangle mesh, so that
the function values change without abrupt jumps, ensuring smooth transitions. As
established, Dijkstra’s algorithm is first used to compute the necessary distance graph on
the mesh between all relevant vertices, and then the RBF is used to interpolate these
values

At each vertex vy, a Gaussian function is chosen as the basis function of the RBF:

pi(z) = e @) (4.1)

The parameter aj controls the influence of the vertex vg. The higher the value of ag, the
greater the influence of the vertex vg. By default, ap = 1, it can be defined in the same
step as f(vg) when selecting seed vertices on the mesh. For distance-based evaluation,
the variable z defines the distance from any vertex v; to vy, calculated using the Dijkstra
algorithm. The distance is denoted as dist(v;, vg):

7(dist(vi,vk) )2

pr(vi) = e % (4.2)
The interpolated values f(v;) are expressed as
N
Fli) = 1 pjlvi) (4.3)

j=1

The weights [; are determined by ensuring that the interpolation condition is satisfied
for each vertex vy, where f(v) is represented by

N
Floe) =1 - pj(or) (4.4)
j=1

This leaves us with N linear equations for N unknown values [j, which can be calculated
by solving the linear system:

A-x=b (4.5)

Where,

o x=(l1,...,Ix)7T is the vector of unknown weights



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

4.4. Octree Subdivision & Non-Uniform Primitive Intersections

o A e RN*N with Ay = pj(vr) is the matrix of Gaussian basis function evaluations

o be RN, with b, = f(vg) is the vector of known function values of seed vertices

Solving this system yields the weights [. These are used to compute the RBF-interpolated
values across the input mesh.

4.4 Octree Subdivision & Non-Uniform Primitive
Intersections

The uniform offset approach, described above in Chapter 3, generated an adaptive SDF
between the octree cells and their respective input mesh primitives. The non-uniform
approach reuses the hierarchical octree structure, but only the intersection between the
octree cell and the primitive is considered. To account for the geometric details of the
variable offset, the primitives used in the intersection calculation need to be adapted to
factor in the variable radius.

For the uniform offset, the offset distance is constant and applied uniformly across the
entire input mesh. This results in consistent primitive shapes for all elements of the
mesh. In contrast, with the variable offset approach, the user assigns offset distances
to specific vertices. These distances are then interpolated by the RBF (see section 4.3)
across the mesh and stored as vertex properties in their respective vertices. Consequently,
the geometric representation of the primitives, based on the vertices, edges, and faces of
the input mesh, needs to be changed to support varying offset distances. These changes
are necessary to accommodate the different offset distances stored at the vertices. For
edges, the cylinder used in the uniform approach transforms into a truncated cone,
defined by its varying radius along its edge. For faces, instead of using a prism, the
representation is replaced with a pair of triangles, one extending into the positive offset
direction and one in the negative direction. This is necessary to factor in both outward
and inward-facing offset surfaces. The sphere primitive, associated with only one vertex,
remains unchanged, as it does not depend on adjacent elements and is always directly
reflecting the interpolated offset at that specific vertex.

Unlike the uniform offset method, the minimum and maximum distances per cell are no
longer computed. This is due to the difficulty of computing accurate distance bounds
when primitives vary across space. Instead, the decision to subdivide a cell is based only
on geometric intersection tests with the variable-offset primitives.

The intersection algorithms in this section follow the standard methods from geometric
collision detection literature, most notably those presented by Ericson [Eri04] and Lengyel
[Lenl6]. These include implicit surface representations, parametric line equations, and
variants of the separating axis theorem (SAT).

Let C represent an octree cell, P a primitive (€ sphere, truncated cone, or triangle). The
cell C is subdivided if the following conditions are met,

45



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

4.

NON-UNIFORM OFFSET APPROACH

46

intersects(C, P) A level(C) < max Level (4.6)

Where,

o intersects(C, P) is a Boolean function that returns true if the cell intersects the
volume of the primitive, regardless of whether this includes the actual offset surface

o level(C) is the current hierarchical level of C' in the octree data structure

e maxLevel denotes the predefined maximum allowed subdivision level for the hier-
archical octree

This condition is weaker compared to the uniform offset approach, which uses local
minima and maxima distances to primitives for SDF computation across the octree. As
a result, the octree may subdivide more, including regions that lie between the inner and
outer offset surfaces, or even outside the actual surface, as long as there are primitives in
those areas. For instance, consider a sphere primitive defined by a vertex; any octree cell
intersecting this sphere will be subdivided. Due to the RBF’s interpolated offset value,
the sphere’s influence can extend beyond the intended offset surface region, especially
when the offset distance varies significantly between adjacent vertices. These overlapping
regions do not contribute to the actual offset surface.

During mesh extraction with DC, any cell that stores intersecting primitives is treated
as if it might contain part of the surface. This intersection-based strategy does not
distinguish between inner, outer, or transitional regions and many leaf nodes that lie
between the offset layers or outside them are also marked as potential surface cells.
Therefore, it is necessary to filter out these extraneous surfaces after the mesh extraction
step. This filtering process, which is performed separately for the inner and outer offset
surfaces, is discussed in detail in section 4.6.

The subsequent sections of this chapter focus on the intersection computations. Specifi-
cally, it explains how an octree node’s geometry is tested for intersection against each of
the primitives used in this non-uniform approach, namely spheres, truncated cones, and
two triangles.

4.4.1 Intersection Sphere & Cell

For a given vertex v;, the RBF interpolation defines a specific offset distance §;. To
determine if a sphere, centered at v; with radius ¢;, intersects an octree cell, the minimum
distance, ¢min, from the sphere’s center to the cell’s surface is calculated. If v; falls
within the cell, this distance is set to 0.

The sphere intersects the octree cell if the minimum distance ¢,,,;,, is less than or equal
to the sphere’s radius (;):



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

4.4. Octree Subdivision & Non-Uniform Primitive Intersections

~~~~~

.
.......

Figure 4.2: A simplified two-dimensional view of the intersection between the vertex v;
and the octree cell (in black). The sphere, here in two dimensions, is a circle, with radius
0; centered around v;, with the smallest distance ¢, to the right edge of the cell.

Where,

e Omin represents the smallest distance from the cell to the sphere’s surface

o 0; is the interpolated offset distance (radius) of the sphere centered at v;

Figure [4.2 illustrates this intersection in two dimensions. As was described in the uniform
approach (Section 3.4.1)), the black square represents the cell and intersects with the
sphere, represented by the circle in blue. Compared to the uniform approach, the non-
uniform method only uses the minimum distance (¢;,;,) for the intersection test and
does not consider the maximum distances (¢mqz), since the variable approach does not
rely on SDF bounds for subdivision and instead simply checks for geometric intersection.

4.4.2 Intersection Truncated Cone & Cell

For the intersection between the octree cell and the truncated cone, the component of
the variable offset from inside the edge is considered. For an edge v;; = (v;, Vv;), there
are two offsets d;,9; in each endpoint, which are linearly interpolated.

As a result, the primitive shape is defined as a truncated cone without top and bottom
surfaces. If a truncated cone intersects an octree cell, either one of the endpoints, v;, v;,
is inside the cell, or one of the following three cases holds.

The first two cases are illustrated in Figure 4.3, showing how a truncated cone might
intersect either the cell edge or its plane through the bounding planes of the cone.

47

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

4. NON-UNIFORM OFFSET APPROACH
.Ci
Case 1
@ ®
Cj Cjt+1
Figure 4.3: The first two cases of intersections between a truncated cone and an octree
cell in two dimensions. Left: Cell edge intersecting the cone surface. Right: Cell plane
intersecting the cone’s bounding plane and capped by a sphere at radius 9;.
Case 1: Cell Edge intersects Truncated Cone
Intersections are calculated for each edge of the octree cell and the truncated cone. The
cell with edges c;; = (c¢;,¢;j). The truncated cone is defined by its edges e;; = (v;, V)
and its two offsets d;,d;. The line segment between the edge endpoints defines the cone
axis, with a linearly varying radius along the axis from d; to ¢;.
It is not sufficient to check against only the edge endpoints of the octree cell edge, as the
offset distance can be larger than the cell diagonal and therefore intersect another cell.
To find intersections, the implicit equation of the truncated cone surface is used, and the
points along the cell edge that satisfy this equation are calculated.
Let x be a point that lies on the surface of the truncated cone. Then its perpendicular
distance to the cone’s axis equals the cone’s radius at the corresponding position along
its axis. This can be expressed as,
2 2
Ix —p(@)]" = r(t) (4.8)
Where,
e x is a point along the octree cell edge
e p(t) = v; + t(v; — v4), parametrized equation of the cone’s axis, ¢t € [0,1]
o 7(t) = (1 —1t)d; + td;, radius of cone’s axis at position ¢, ¢t € [0, 1]
The cell edge can be parametrized as,
48

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

4.4. Octree Subdivision & Non-Uniform Primitive Intersections

q(s) =ci+s(c; —c;),s €[0,1] (4.9)

Where,

e 5 =0 is the start of the edge, point c¢;

e s =1is the end of the edge, point c;

By substituting the octree cells edge parametric equation ¢(s) into the implicit equation
of the truncated cone, results in,

lg(s) = p(®)]I* = r(1)* (4.10)

This expression simplifies to a quadratic equation in terms of s and ¢. Solving this
quadratic equation provides potential intersection points. A subsequent verification step
ensures that these solutions satisfy s,¢ € [0, 1] and that the intersection points lie within
the geometric extent of the bounding box’s edge ||c; — c;|.

Case 2: Cell Planes intersect Truncated Cone Planes

To find intersections, the octree cell planes are intersected with the bounding planes of
the truncated cone. If an intersection is found, it results in intersection lines. The lines
are then intersected with the spheres at the caps of the cone to determine whether the
cell plane intersects the truncated cone. The spheres at the caps of the truncated cone
are defined by their center vertices v;, v; and their respective radii d;, ;. This results in a
quadratic equation that results in intersection points after solving. If they are contained
in the octree cell, intersections have been found.

The truncated cone is defined by two planes orthogonal to the cone’s axis, passing through
the endpoints v; and v;. Let the normal n; and ny be aligned to the cone’s axis, then
the planes that truncate the cone’s surface along its axis can be defined as,

Plane 1: n; = H:] — :ZH, passing through v;
] v
vi — v . (4.11)
Plane 2: ny = TResp——g passing through v;
i J

Additionally, two spheres are centered at v; and v; with their radii §; and ¢;, respectively.

The octree cell consists of six planes, where each plane is represented in its implicit form
as,

n, x=d (4.12)

Where,

49

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

4.

NON-UNIFORM OFFSET APPROACH

50

e n, = aligned plane normal vector (in z,y, z axis)
e X = any point on the plane

e d = plane offset, defined by minimum or maximum coordinates of the cell along
the corresponding axis

For each octree cell plane, an intersection check with each of the two truncated cone
planes is performed. The intersection line of the two planes can be defined as follows,

I(t) =0 +td (4.13)

Where,

o d = n; X ny, the direction vector of the intersection line (cross product of the plane
normals).

e o0 origin of the intersection line, a point between the two planes

If they are not parallel and indeed intersect, then the intersection line defines the
intersection path between the truncated cone’s bounding planes and the octree cell plane.
Since the truncated cone is capped by spheres at v; and v;, the line must be checked for
intersection with these spheres centered around vy and their respective radii o (k = 1, 7),
to guarantee that the points are within the cone’s bounds. This can be expressed as,

I — vl = 62 (4.14)

Now the line I(t) can be substituted in the sphere equation,

o+ td — v||? = 62 (4.15)

This results in a quadratic equation that can be solved for ¢t. The result needs to be
verified so that they are contained within the bounds of the bounding box, to ensure that
they are not just on its planes.

Case 3: Cell Plane Intersects the Axis of Truncated Cone

The lateral surface of the truncated cone may intersect one of the planes of the octree
cell, with corners cg, in an ellipse. To find the intersections, the axis of the truncated
cones, defined by the two endpoints v;, v, is intersected with the planes of the cell. Let
I be the intersection point between the plane and the axis of the cone. Then the four
line segments (I, cx) must intersect with the truncated cone. This last step ensures that

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

4.4. Octree Subdivision & Non-Uniform Primitive Intersections

Ck—1

Figure 4.4: Intersection of a truncated cone with a plane of the bounding box in three
dimensions. The axis of the cone, defined by v; and v;, intersects the cell plane at points
I. The four segments (I, cy) (in orange) are tested for intersection with the cone surface
to determine if the cell intersects the truncated cone.

the intersection point lies within the truncated cone and verifies that the lateral surface
is within the cell bounds.

Figure illustrates the three-dimensional case where the axis of the truncated cone
intersects the face of an octree cell. Two intersection points I are shown, and line

segments from this point I to each of the plane’s face corners are tested for intersections.

Let e(t) be the line segment of the truncated cone axis,

e(t) =vi+t(vj—vi),t €0,]v; — vill] (4.16)

The planes of the cell are defined in equation To find the intersection point I of the

plane with the truncated cone axis, the value of ¢ that satisfies Cplane, - €(t) = 0 is found.

The resulting intersection point I forms four line segments with the corners cj of the
bounding box plane. These segments are checked for intersections with the truncated
cone, using the method described in Case 1 (4.4.2). If all four line segments (I, cy)

o1

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

4.

NON-UNIFORM OFFSET APPROACH

52

intersect the truncated cone, then the lateral surface of the truncated cone intersects the
bounding box through that plane.

4.4.3 Intersection Triangle and Cell

To determine whether the two triangles, defined by vertices vi, vo, v, formed by applying
the variable offset outwards and inwards (d1,d2,03), intersect the octree cell, several
methods exist. One is the Separating Axis Theorem (SAT), which states that if two
objects are not intersecting, then a plane can be drawn between them. Subjecting those
triangles to this test identifies whether the triangles intersect the octree cell.

The variable offset expands or contracts the triangle along its normal, creating a prism
shaped volume. Let v;r represent the vertices of the offset triangle that expands and v,
the vertices of the triangle that contracts (i = 1,2, 3). These are defined as:

Variable offset outward:

V;L =v; +dn (417)

With the normal nt

nt = (vf — va') X (v;' — VS—) (4.18)

Variable offset inward:

With the normal n™

n"=(vi —vg)x (vy —vg) (4.20)

With this definition, the prism shaped region formed between the triangles ensures that
both outward and inward triangles are considered for intersection with the octree cell.
The SAT method checks for separating planes that divide space in a way that the two
objects lie entirely on opposite sides. Each plane is associated with a specific axis, called
a separating axis. In this case, the normals of the planes of the cell, the normals of the
triangles n™, n~, and the cross products of the edges of the cell and the triangles define
the SAT axes.

The SAT method confirms whether the triangles, including their variable offset, intersect
the cell. Depending on the implementation, different methods are used to check for
intersections.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

4.5. Mesh Shifting and Smoothing

4.5 Mesh Shifting and Smoothing

The DC algorithm creates a mesh from the volumetric data of the octree and places
vertices based on volumetric approximations that may not lie directly on the offset surface.
As with the constant offset approach, they need to be shifted and smoothed.

While the steps for the non-uniform offset approach, in section 3.5, remain largely the
same for mesh extraction, mesh shifting and mesh smoothing, they are slightly adapted
to factor in the changes for the variable offset values.

4.5.1 Mesh Shifting

Similarly to the uniform offset surface approach, the DC algorithm generates a mesh
from the volumetric data, the octree. The non-uniform approach introduces several
considerations that are different from the previous method.

Pavic et al. [PKO8| use a precomputed minimum point and minimum normal for shifting
the cell center, which are computed when determining the local minimum, during the
SDF computation. Due to the weaker subdivision rule, relying only on whether primitives
intersect the cell, these are not available.

Instead, for each octree cell, a query point b is dynamically determined to represent
the closest point on the original input mesh to the current sample location. A k-d tree

search over the original mesh’s vertices, edges, and faces efficiently finds the closest point.

This approach ensures that the surface sample is computed relative to the actual input
geometry for each cell, adapting dynamically to local offset values and varying surface
shapes.

Pavic et al. [PKO08] used a constant offset for all vertices in the mesh. Unlike their
approach, the offset values must be interpolated for the variable offset approach, depending
on where the base point b is found in the mesh.

The method for retrieving the offset value § depends on the location of the query point.

While the RBF interpolation is used to compute a continuous offset field at every vertex
from sparse seed values, we need a more direct and localized interpolation method to find
the exact offset values at the specific point b on the mesh’s geometry. Since the RBF
values are already stored at the vertices, a simpler method can be used to interpolate
between them:

o If b lies at a vertex, the interpolated offset value of RBF ¢ is directly retrieved
from the vertex property

e If b lies on an edge, the offset value § is linearly interpolated between the edge
endpoints, weighted by the relative position of b

o If b lies within a face triangle, the barycentric coordinates of b relative to the
triangle’s vertices are used to interpolate the offset value § for that query point

53

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

4.

NON-UNIFORM OFFSET APPROACH

54

This ensures smooth transitions across the offset surface mesh and as a result, prevents
abrupt changes or artifacts. With the dynamically determined query point b and its
corresponding interpolated offset § now determined, the sample point ¢’ can be calculated.

The sample point ¢’ can be defined as follows,

cd=c+(c—b)§ (4.21)

Calculating the sample point ¢’ ensures that ¢’ is shifted along the vector that points
from the base point b to the center of the cell ¢, scaled by the interpolated offset §. As
with the constant offset, clamping the result to the cell bounds ensures that the surface
sample does not deviate too far from the input mesh. This is especially necessary for
overly large shifts in offsets.

The result is a more flexible and more generalized approach compared to Pavic et al.
[PKO08|]. By dynamically supporting non-uniform offsets, it significantly enhances the
adaptability of the DC algorithm.

4.5.2 Mesh Smoothing

The smoothing step in the non-uniform offset approach remains largely consistent with
its uniform counterpart (Section 3.5.2). In the uniform approach, each vertex receives
two candidate positions. The relaxation force v/, which pulls each vertex v towards v’
and the offset force v”, which helps maintain the position on the offset surface. These
two candidates are then blended into the final position, ensuring that the vertices are
balanced by a weighted average.

In the non-uniform method, the procedure is identical, with the exception that the offset
distances 0 are no longer constant and need to be interpolated. This is achieved per base
point b, either taken directly from the vertex, linearly interpolated between the edge
endpoints, or for the face calculated by its barycentric coordinates. While the formula
remains the same, the constant offset is substituted with the interpolated offset §. This
ensures that the offset force, v, accurately guides the vertex towards the correct position
on the variable offset surface. This enables the smoothing process to properly account
for local offset variations and preserve feature details.

Figure 4.5 illustrates the improvements achieved through non-uniform mesh shifting
and smoothing. The resulting offset surface mesh clearly shows the effects of a higher
offset distance applied to a vertex on the Stanford bunny’s right ear compared to its left.
As highlighted in the enlarged regions on the right, vertex positions now adapt more
accurately to the variable offset distance compared to a simple uniform offset, even in
areas of high curvature. Compared to Figure 3.9, which uses a constant offset, Figure
4.5/ demonstrates that the non-uniform offset surface maintains comparable smoothness
while accommodating a variable offset distance.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

m 3ibliothek,
Your knowledge hub

4.6. Outer and Inner Offset Surface Extraction

Figure 4.5: The resulting non-uniform offset surface after mesh shifting and smoothing.
Vertex positions follow the interpolated offset distance more accurately, while preserving
local detail and still providing a smooth surface appearance. The rectangles on the right
show close-up comparisons highlighting the improved adaptations in regions with a higher
curvature.

4.6 Outer and Inner Offset Surface Extraction

The non-uniform offset approach requires an additional post-processing step, extracting
the correct offset surfaces. This necessity stems from its modified weaker subdivision
rule, which, unlike the precise SDF bounds used in the uniform offset method, relies
on simpler intersection tests. After octree subdivision, the DC algorithm (Chapter
5)) is applied to reconstruct a watertight mesh from the octree cells. Since the octree
contains both offset regions and unwanted primitive intersections, the resulting DC mesh
contains multiple connected mesh components, including both desired offset surfaces and
algorithmic artifacts. By performing the DC algorithm first, surface connectivity and
geometry information are readily available and enable a more precise classification based
on component size, normal orientation and distance to the input mesh. The identification
of these surfaces is detailed in this section.

In the uniform offset approach, octree cells are adaptively subdivided where the SDF to

the original mesh falls within a certain range relative to the constant offset distance 9.

This results in a clear boundary corresponding directly to the desired offset surface.

For the non-uniform offset, defining and evaluating a consistent SDF for a continuously
varying offset is complex. The octree subdivision criterion is therefore adapted: cells
are subdivided based on their intersection with offset primitives that represent the
entire volumetric region spanned by the variable offset, namely, truncated cones and
positive/negative offset triangles. An octree cell is marked for subdivision if it intersects

55

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

4.

NON-UNIFORM OFFSET APPROACH

56

with any of these dynamically generated offset primitives. This is a less restrictive rule
than the SDF-based subdivision. The consequence is that the resulting octree contains
cells representing not just the final offset surface, but potentially the original mesh surface
and other by-product surfaces.

The DC algorithm, when applied to this octree, generates a mesh with multiple connected
components. These include cells corresponding to the desired outer and inner offset
surfaces, as well as potentially unwanted surfaces. For extraction, these cells must be
correctly identified and classified.

e Outer offset surface cells are identified as leaf nodes in the octree that have been
marked as containing an intersecting offset primitive and whose geometry (based on
the closest point to the original mesh) points towards the positive normal direction
(outward).

o Inner offset surface cells are identified as leaf nodes containing an offset primitive,
but whose geometry (closest point to original mesh) points towards the inverse
normal direction (inward).

To isolate the correct surfaces, an additional extraction step is introduced. This process
begins by verifying each component of the outer offset surface to determine its inclusion
in the final output mesh. This occurs after the DC algorithm, mesh shifting, and
mesh smoothing have been applied. The latter two algorithms are applied to the entire
generated mesh, even though some components will ultimately be discarded. Since we
cannot rule out that some of those surfaces are used for the inner offset surface extraction
(detailed below).

Figure 4.6 illustrates the different results of the offset surface extraction methods for
non-uniform offset surfaces. From left to right, it shows the successfully extracted inner
offset surface, the combined surfaces before extraction, and the extracted outer offset
surface. This is a simple example where each surface consists of a single component, but
it helps demonstrate the principles of component identification and separation. Multiple
inner components may be extracted in more complex cases, while others might even be

discarded.

Outer Offset Surface Extraction

After the DC algorithm, multiple disjoint surfaces are included in the resulting output
mesh, where each surface represents a component within the mesh. In this approach, the
largest component of the resulting output is extracted, which results in the correct outer
offset surface. Under the assumption that the input mesh consists of one non-disjoint
mesh, with no extremely large cavities, the largest component is extracted as the outer
offset surface.

For the identification of the largest components, several methods can be employed. In
this work, a graph-based method is used to divide the mesh into individual connected

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

4.6. Outer and Inner Offset Surface Extraction

Figure 4.6: Non-uniform offset surface component extraction after DC. Left: inner offset
surface component, middle: combined DC mesh, before extraction, containing both
inner and outer components, right: outer offset component, after extracting the largest
component. This highlights the need for correct component classification and filtering of
mesh components, due to the weaker subdivision rule.

components. Using either a depth-first search or a breadth-first search, each unvisited
vertex is assigned a label in the output mesh. The sizes of all components can be
determined by counting the vertices of each labeled component. The largest is then
extracted as the outer offset surface.

In the case of the inner offset surface, the output surfaces can be smaller connected
components. These need to be identified as well to extract all surfaces that fall within
the threshold of inner offset surface cells.

Inner Offset Surface Extraction

The inner boundary of the offset geometry, also called the inner offset surface, must
be extracted from the mesh components. These components need to be extracted, as
mentioned in the previous section, for outer offset surface creation, due to a weaker
subdivision rule, from which the DC algorithm extracts additional components. To
determine which components are relevant for the inner offset surface, two filtering criteria
are applied: components that are either outside the original input mesh or too far from
the desired interpolated offset distance are discarded.

As with outer offset extraction, each component of the mesh is labeled via a graph-based
method. With the help of a k-d tree, based on the input mesh, and a signed distance
function, the components can be classified as either outside or inside. If the distance
between the base point of the k-d tree to the point in the offset surface mesh is positive,
then the component is outside, if the signed distance function is negative, then the
component is inside. This ensures that all outer components are discarded.

Subsequently, the interpolated variable offset of the base point, §, is compared with the

o7

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

4.

NON-UNIFORM OFFSET APPROACH

58

Euclidean distance between the base point and a point v on the offset surface mesh.
If this comparison falls within a user-specified range, then the vertex is marked to be
discarded. This rule can be defined as,

16, —ul < 06, (4.22)

Where,

e J, is the interpolated variable offset, c.f. 4.5.1

¢ u, the Euclidean distance between the base point of the k-d tree and the point v
on the offset surface mesh

e 0, a user-specified threshold, of when to discard the vertex of a specific component

The threshold 6 is necessary because even after mesh shifting and smoothing, the vertices
of the generated mesh are not guaranteed to lie perfectly on the exact mathematical
offset surface. This, combined with the geometric approximations of the DC algorithm,
means that the distance v will not be the same as the interpolated offset d,,. With the
threshold @, a tolerance is introduced, allowing us to discard components that are clearly
artifacts.

In the end, all components are discarded if a certain percentage of the vertices within this
component are marked to be discarded. The remaining components are now the result of
the inner offset surface extraction method and form the inner offset surface mesh.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

CHAPTER

Mesh Extraction with Dual
Contouring

After generating the volumetric data structure for both the uniform and non-uniform
offset approaches, each octree cell is classified according to whether they are enclosed
by the offset surface or the empty space outside it. For the uniform approach, this
comes from the strict bounds of the SDF, while for the non-uniform approach, it is
determined by whether the cell contains contributing primitives or not. This chapter
introduces a specific variant of the Dual Contouring (DC) algorithm, which enables the
reconstruction of a topologically correct watertight mesh from these volumetric data.
The re-implemented and adapted DC variant introduces several key differences from the
traditional approach to enhance robustness, efficiency, and suitability for offset surface
generation.

5.1 Dual Contouring

DC is a surface reconstruction algorithm developed by Ju et al. [JLSWO02] and uses an
adaptive approach to reconstruct a mesh from an octree. Its name, "Dual Contouring",
stems from its similarity to a dual graph. The dual graph places a vertex for each face
in a planar graph, DC effectively creates vertices within or for each octree cell. By
positioning these vertices in adjacent cells, faces can then be formed across the shared
boundaries (facets) of these octree cells, as illustrated in Figure 5.1, which also illustrates
the face vertices ordering process, described later in this chapter.

The variant implemented here incorporates several adaptations for robust offset surface
extraction:

o The traditional DC method uses the quadratic error function (QEF) for vertex
placement, minimizing the sum of squared distances to intersection points, as

29

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

5.

MESH EXTRACTION WITH DUAL CONTOURING

60

h

44 °107

Figure 5.1: The face f; created by four octree cells, identified by their indices 3, 15, 44, 107.
The cell indices representing the face vertices must be sorted to find a consistent ordering.
This is achieved using facet neighborhoods. For example, cells with indices 15 and 107
share a common facet and initially form an unordered set that needs to be sorted.

detailed in the previous section 2.2. This results in a linear equation system, solved
to find the best-fit vertex, which is most consistent with the normals of the function.
This resulting vertex is not guaranteed to lie inside the cell. In this DC variant,
optimal vertex placement is deferred to the mesh shifting step of the offset surface
generation. Information about the offset surface and the input surface determines
the vertex’s final position. This works well for offset surface generation because the
offset surface is predefined and optimized separately. Consequently, for this DC
adaptation, placing the vertex at the cell center is sufficient

e To resolve ambiguous topological cases and handle complex feature lines more
robustly than standard DC implementations, a specialized 27-case recursion is
employed. This method systematically analyzes the configuration of adjacent octree
cells to ensure correct connectivity even in detailed or problematic regions

o A specific issue with DC is the potential for duplicate face creation. This variant
implements a facet neighborhood structure to detect and eliminate these redundant
faces. This involves explicitly checking adjacent cells that share common octree
facets to ensure that output mesh faces are generated only once and correctly linked

o To ensure all potential vertices are considered and processed efficiently, cells are tra-
versed in a predefined, ordered way. Combined with the deferred vertex placement,
this contributes to the algorithm’s overall robustness

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

5.1. Dual Contouring

The input to the DC algorithm is the octree data structure, where each cell is classified
as inside or outside with respect to the offset surface. The definition depends on the
offsetting approach:

e For the uniform, SDF-based approach, an inside cell is a cell classified by the sign of
the sampled distance field. Negative mark inside cells, while positive mark outside
cells.

e In the non-uniform offset approach, a cell is considered inside if it contains or
overlaps one or more offset primitives. The outside cells do not contain any
primitives at all.

It is important to distinguish between octree facets and the resulting mesh faces:

¢ An octree facet refers to a planar face of an individual octree cell. When the DC
algorithm identifies an inside-outside transition, it places vertices by analyzing the
intersections of the offset surface with the edges of the octree cells. These vertices
are then connected to form output mesh faces across the octree facets (the shared
faces between adjacent octree cells)

¢ A mesh face refers to a polygonal element in the final reconstructed three-dimensional
mesh. These mesh faces are formed by connecting the vertices generated by DC
within the octree cells

The robust linking of these mesh faces for the final output mesh requires ensuring that
they correctly bridge adjacent octree cells. This involves checking common vertices and
edges on shared octree facets, similar to improved DC versions focused on fixing holes in
meshes by Bischoff et al. [BPKO5].

Both the uniform and non-uniform offset surface generation methods then shift and
smooth these generated vertices, ensuring proper offset surface representation. This is
important for the non-uniform offset, where the offset distance is interpolated between

vertices, allowing the final vertex position to accurately reflect these interpolated distances.

In contrast to other surface reconstruction algorithms, like Marching Cubes, DC handles
sharp features very well since it creates vertices in the interior of cells as opposed to
Marching Cubes, which creates them on the boundaries of cells, potentially losing sharp
details.

This variant of the DC algorithm allows the octree data structure to implicitly define
where faces are created, primarily by identifying the inside-outside transition. By
examining adjacent cell relationships, cells that are close but not part of the actual
offset surface transition are not considered for mesh generation, unlike less robust surface
cell classifications that can lead to ambiguous cases caused by cells at varying levels of
subdivision.

61

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

5.

MESH EXTRACTION WITH DUAL CONTOURING

62

Both offset approaches ultimately generate octree cells containing information relevant
to the offset surface. They also both involve post-processing the mesh with shifting and
smoothing operations. Because of these shared characteristics, the core DC algorithm
can be used interchangeably for either uniform or non-uniform offset generation, with
specific adaptations handled during the setup and post-processing stages. The algorithm
itself and how it is adapted to the surface generation process are outlined in the following
sections.

5.2 Algorithm Overview

The DC algorithm works on the previously generated adaptive octree data structure.
Its goal is to extract a manifold mesh that accurately represents the offset surface by
identifying and processing regions where the surface boundary traverses octree cells. This
involves a traversal of the octree and the generation of mesh faces based on inside-outside
transitions, which lead to a watertight surface representation. The procedure can be
grouped into three major, interconnected stages:

e Recursive Processing of Octree Cells: Recursively traverse the octree structure,
identifying inside-outside transitions

e Face Generation and Connectivity: Collect potential faces, with inside edges,
gather neighborhood information, and link faces that share a common facet, sort if
necessary

e Face Walk and Preventing Duplicates: Perform face-walk, for vertex ordering,
place vertices in the center of the cell, and detection of duplicate faces

Recursive Processing of Octree Cells This initial stage systematically iterates the
entire octree structure, from its root down to the finest levels of the data structure. The
algorithm locates transition cells, octree cells through which the implicit offset surface
is determined to pass. These cells contain the necessary information to reconstruct the
mesh, identified by their classification as having both inside and outside regions relative
to the offset surface. They are also known as inside-outside cells. This recursive process
ensures that all relevant regions of the volumetric data are considered.

Face Generation and Connectivity Once inside-outside cells are identified, the
algorithm proceeds to generate potential mesh faces. Continuing with determining
where the surface intersects the edges of these octree cells and creating initial vertices.
Information regarding the neighborhood of these newly formed faces, particularly their
adjacency to shared octree facets, is collected. This initial connectivity data is used to
ensure that the subsequent stages can correctly link the individual mesh faces into a
coherent surface.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

5.3. Dual Contouring Algorithm

Face Walk and Preventing Duplicates To construct a watertight and topologically
sound mesh, a face "walk" procedure is performed. This stage is responsible for establishing
the correct ordering of vertices within each face and ensuring that faces are properly
connected to their neighbors across shared octree facets. Additionally, the face walk
detects and prevents duplicate face generation. Such duplicates can come from ambiguous
cell configurations or overlapping geometries, and their prevention is needed for mesh
integrity.

When the face walk or connectivity checks reveal topological ambiguities, such as the
detection of duplicate faces or unresolved overlaps, the algorithm triggers further localized
octree subdivision. This refinement ensures that problematic regions are further subdi-
vided to a finer level of detail and thereby provides more precise geometric information.
The algorithm then re-evaluates these refined regions, guaranteeing that a correct and
artifact-free mesh can be extracted.

The algorithm 5.1 provides pseudocode for this adapted DC variant as implemented
and described above, summarizing the recursive traversal, face generation, connectivity,
duplicate detection, and iterative refinement.

5.3 Dual Contouring Algorithm

In this section, the variant of the DC algorithm used for extracting a mesh that correctly
represents the offset surface is detailed. Given an octree cell C' with eight children
c1,...,cs, the goal is to extract a watertight manifold mesh that lies on the offset surface.
The cells have been previously determined to be inside or outside the offset surface by
their respective uniform or non-uniform approaches. How outside and inside cells are
defined depends on either an SDF for the uniform approach or the less strict classification
of whether the cells contain primitives for the non-uniform approach.

This DC variant recursively subdivides the octree, searching for inside-outside transitions,
which indicate where the offset surface intersects the cells. These transitions define the
boundary of the surface, where a region classified as "inside" borders a region classified
as "outside." The algorithm detects where such transitions occur instead of explicitly
looking for surface cells within the octree data structure. This is more robust in handling
varying octree resolutions. An inside-outside transition occurs when at least one of the
eight octree children’s cells is classified as outside while at least four are inside cells. If
at least one edge is enclosed by four inside cells and is adjacent to one outside cell, the
transition crosses the boundary from inside to outside. This condition ensures that the
offset surface passes through this region.

An example of an inside-outside transition can be seen in Figure 5.2, where the cells meet
the above requirements. In Figure 5.3 the four inside cells that contain the inside edge
are examined, in this diagram the inside edge is marked in blue and can be defined as
e = (w,Vv), where v is an outside vertex, a corner of an outside cell (seen in Figure 5.2),
and w is at the opposite end.

63

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

5. MESH EXTRACTION WITH DUAL CONTOURING

4
/

Figure 5.2: Eight octree cells, red and blue cells are classified as inside cells, while the
green cell is an outside cell. These eight cells meet the requirements of an inside-outside
transition, with at least four inside cells and one outside cell.

Figure 5.3: An inside edge, e, enclosed by four inside octree cells. With endpoint v,
which is part of an outside cell, and w at the opposite end.

64

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

5.3. Dual Contouring Algorithm

Algorithm 5.1: Dual Contouring on Octree for Mesh Reconstruction

Input: Octree with inside/outside classification

Output: Watertight mesh reconstructed from inside-outside transitions
1 Function RecursivelyProcessOctree (cells):
/+ Recursive Processing of Octree Cells

2 if containsOutsideVertex(cells) then
3 if containsInsideEdge(cells) then
4 meshFace < createMeshFace(cells.facetNeighborhood);
5 potentialFaces.add(meshFace);
6 end
7 end
8 foreach child € cells.children do
9 RecursivelyProcessOctree (child) ;
10 end
11 Function CreateMesh ():
/+* Face Generation and Connectivity
12 foreach face € potentialFaces do
13 linkNeighbors(face);
14 sortFacesIfNeeded(face);
15 end
/+ Face Walk and Preventing Duplicates
16 foreach face € potentialFaces do
17 setVertexOrder(face);
18 mesh.add(face);
19 foreach linkedFace € face.neighbors do
20 walkList <— performWalk(linkedFace);
21 if detectDuplicate Walks(walkList) then
22 duplicateFaces.add(linkedFace);
23 end
24 end
25 end
26 foreach face € duplicateFaces do
27 ‘ subdivide(face);
28 end

29 if duplicateFaces # null then
/+ Restart algorithm with newly subdivided cells

30 RestartAlgo (octree.root) ;
31 end
32 return constructMesh(mesh);

*/

*/

*/

65

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

5.

MESH EXTRACTION WITH DUAL CONTOURING

66

For clarity, the key definitions for these transitions are:

o Outside vertex v: A vertex located at the corner of a cell where at least one child
cell is classified as an outside cell.

o Inside edge e = (w,Vv): can be defined as an octree cell edge that connects an
outside vertex v to an inside region, enclosed by four inside cells. The opposite
endpoint of the octree cell edge e is defined as w.

When generating faces of the final mesh, a single octree facet may be associated with
multiple faces. In an optimal case, each facet links exactly two faces. Due to the nature
of the adaptive octree, cases can occur where more than two faces share the same facet.
To ensure correct connectivity, these faces must be sorted. To resolve this, for each
face, a piercing point p, with its corresponding piercing normal n,, is introduced. These
are used to determine the face’s orientation, which is then utilized for sorting. Sorting
ensures that faces sharing the same facet are consistently ordered, therefore preventing
mesh inconsistencies.

The piercing point is calculated as:

1
Py =3V + 3V (5.1)
The piercing normal is given by:
n,=v-w (5.2)

Where v is the outside vertex and w is the opposite endpoint of the edge within the
inside region. The piercing point p, always lies on the inside edge, and its normal n,
points to the outside vertex. The normal n, helps determine a consistent ordering by
serving as a reference direction against which angles are computed, which are then used
for sorting.

5.3.1 Recursive Processing of Octree Cells

The goal of the recursion process is to traverse the octree hierarchy, identifying inside-
outside transitions at the lowest level of the octree. The inside-outside transitions define
the boundary of the offset surface.

Each recursion call evaluates whether the eight child cells satisfy the inside-outside
transition requirements. The process begins by checking for an outside vertex. One of
the octree children must be an outside cell. If at least four adjacent cells are inside the
cells, then an inside region has been identified.

Once these conditions are met, the next step is to verify the existence of an inside edge.
The eight octants are again separated into regions of four cells, depending on the axis

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

5.3. Dual Contouring Algorithm

direction of the octant, i.e., top for positive z axis direction, to identify possible inside
edges. Each region must contain at least three unique cells since only triangles and
quadrilaterals are considered. Duplicate cells can occur due to the nature of how parent
cells are passed down through recursion. An inside edge can be found if four inside cells
enclose an edge and are adjacent to an outside cell. If found, cell locations, outside vertex,
and inside edge, including piercing point and piercing normal, are stored as a potential
mesh face.

To ensure consistent face generation, the outside vertex and inside edge conditions can
be defined as follows:

An outside vertex exists if at least one cell is outside:

Jde; € cq, ..., c8, s.b. ¢ is an outside cell (5.3)

At least four cells are inside:

lej € c1,...,¢c8, 8.t. ¢j is an inside cell| > 4 (5.4)

An inside edge exists if four inside cells enclose the edge and are adjacent to an outside
cell:

4
Jde = (w, V), s.t. v € ¢j(outside),w € ﬂ cj(inside) (5.5)
j=1

The recursion process ensures that all transitions are fully captured at the smallest level
of the octree. The recursive calls of an octree cell are, therefore, divided into well-defined
cases. The cells are then divided until all possible cases are covered.

The recursive calls within the algorithm are categorized into four types: A, B,C, and D,
resulting in a total of 27 distinct cases. Figure 5.4 provides a comprehensive list of these
27 cases. Each recursion step considers eight octants ¢; = c1, ..., cs. These cases are the
child cells of the eight octants of an octree cell, where each cell is again subdivided into
eight octants (compare with octree octants in Figure |3.4). Since some recursion cases
share cells, the number of required calls to all 27 cases is minimized. In Figure 5.5, two
different sets of recursion calls, one shaded in red and blue and the other in green, would
occupy the same cases, visible in the figure where the cells transition from one color to
the other.

The cases required for each recursion step are determined based on the position of the
current cell relative to its parent and the root cell. Once the position of the parent cell is
determined, the necessary recursion cases can be identified.

The following is the list of all recursion cases:

e A:1,3,7,9,19,21,25,27

67

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M 3ibliothek,
Your knowledge hub

5. MEsH EXTRACTION WITH DuAL CONTOURING
Figure 5.4: The recursion calls for all eight octree octants are divided into 27 cases. The
nine top cells are numbered from 1 — 9, the middle from 10 — 18, and the bottom from
19 —27.
e B:24,6,810,12,16,18,20,22,24,26
e (C:5,11,13,15,17,23
e« D: 14
To ensure the recursion reaches the smallest level of the octree and every inside-outside
transition is considered, some calls are always made (in bold in the above list). The same
holds for the initial call to the root cell, where every case is added to the recursion calls.
To optimize recursion, calls are made selectively based on the location of the parent cell.
The following example shows how recursion cases are chosen:
For instance, in case B, the recursion step could encounter the following four cases:
4,6,22,24
e For case 4, if the parent cell is located on top of the current cell, then case 24 can
be ignored.
68

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

5.3. Dual Contouring Algorithm

AN

Figure 5.5: In this diagram, all 27 recursion calls are seen, with two different sets of
recursion calls highlighted. Each call consists of eight cells, one is shaded in red and blue,
and the other one in green. Where the color transitions from one color to the other, calls
are shared between two recursion cells.

e For case 6, if the parent cell is located on the right, then case 4 can be ignored.

e Case 22, on the other hand, is always added to the recursion calls, ensuring that
the recursion converges to the smallest cells.

o For case 24, if the parent cell is located on the right and is on the bottom relative
to the current cell, then case 6 can be ignored.

The predefined and optimized recursion calls ensure that the octree is fully traversed to
its lowest level and that all inside-outside transitions are considered while minimizing
unnecessary recursion calls.

With all inside-outside transitions identified, the next step is to generate and connect
faces to ensure a manifold mesh with proper vertex ordering is created.

5.3.2 Face Generation and Connectivity

In this step, potential faces are validated, and their neighborhood connectivity is estab-
lished. The previous step produced a list of potential faces, including the respective facet
neighbors they are created from. In Figure 5.6, six octree cells share two faces, marked
in red and blue, on a common octree cell facet. To ensure correct face connectivity,
these two adjacent faces must be linked along their shared facet, marked in green. This
diagram illustrates this process for a single facet. The algorithm verifies every octree
facet of the neighborhood list to maintain proper face connectivity.

69

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

5.

MESH EXTRACTION WITH DUAL CONTOURING

70

5‘
‘5
Y IS N

L LY P

‘:----l -
1
1 S
4 .
A3
ss

T T4

Figure 5.6: Octree cells enclosing two potential mesh faces (in red and blue), sharing a
common facet (green). The octree facet in green has two potential mesh faces that need
to be linked.

Each octree cell has a list of faces that are to be created from this cell. In this step, the
algorithm links common faces of octree facets to ensure correct face connectivity in the
final mesh. Two unique cells are checked against common faces. If two cells share exactly
two faces on a facet, they can be directly linked to each other. For cases with up to eight
quad faces, the correct connectivity must be established first (from different adjacent
cells).

For example, in Figure 5.7, a facet contains four faces: fi, fo, f3, f4. The blue square
represents an octree facet, where the endpoints are labeled as "I" (inside) and "O"
(outside) to indicate whether the adjacent cell is inside or outside. The goal is to correctly
link the faces, ensuring that f; connects to fo and f3 connects to fi. To achieve this, the
faces are sorted based on their piercing points and normal vectors.

To establish a correct ordering, the piercing point p, is defined along the inside edge of
the four enclosing cells. Its associated normal n, provides directional information for
ordering faces, always pointing in the direction of the outside cell. A center point for the
intersecting facet is created. This point serves as a reference for sorting the faces.

For each intersecting face, a piercing vector p? is computed, representing the direction
vector from the center to the face’s piercing point p,, which was declared earlier in
Equation 5.1. It is defined as follows:

p¢ = p; — center (5.6)

where p; is the piercing point of face f;, and center is the center of the facet intersections.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

5.3. Dual Contouring Algorithm

it

s
I 10O
fi

Figure 5.7: In this scenario, the blue square represents an octree facet, where the
endpoints denote either an "I" for an inside cell or "O" for an outside cell. The faces
f1,..., fa need to be linked correctly so that f; and fo, as well as f3 and f4, are linked
together.

A reference vector of pZ-C is chosen arbitrarily as the first piercing vector p{. This
reference vector serves as the initial point for computing angles to other piercing vectors.

To determine correcting ordering, the angle 6 between the reference vector p? and the
remaining pic is computed:

cos(#) = dot(p$,p%), where i # 1 (5.7)

cos(0) = p{ - p%, where i #1 (5.8)

The faces can now be sorted in a counterclockwise (CCW) fashion based on their angles
around the facet center. Taking the example from Figure 5.7 and calculating their
respective piercing points, the angles between the first piercing point and the remaining
piercing points of faces two to four can be calculated. This results in the following figure,
Figure 5.8, where 0; represents the angles between piercing points. After sorting, they
can be correctly linked together, connecting the faces of p{’ to the face of p$ and p3C to
pf.

Once sorting is complete, a final verification step ensures consistent orientation across
the facet. Since the reference vector is chosen arbitrarily, the start and end faces are
not necessarily ordered. To correct this, the ordering is verified by computing the facet
normal Ngacet:

71

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

5.

MESH EXTRACTION WITH DUAL CONTOURING

72

Opg I

ol

p¢

0O
D>
Figure 5.8: An octree facet (blue) with the piercing points pzC of their respective faces.

The angles 01, 6o, and 63 from the reference piercing point p{ define the face order along
their shared facet.

1

Nacet = P? X fdir (59)

where fy;, is the direction of the quad face, indicating which side of the parent cell the
four child cells that form the current face are located on. This ensures that the cross
product of the piercing point vector and the face direction results in an outside pointing
vector, preventing it from aligning with any of the face’s edges.

If the resulting face sequence does not match the expected orientation given by ngacet, the
sequence is shifted by one position. This guarantees that face ordering remains consistent
across all facets.

With the faces now correctly linked and ordered within shared octree facets, the next step
is to ensure consistent vertex connectivity across the mesh, detailed in the next section.
A face-walk process traverses the faces of an octree cell, establishing vertex ordering and
creating the final position of the face vertex. Additionally, overlapping facet faces are
detected and further subdivided if necessary to maintain a watertight mesh.

5.3.3 Face Walk and Preventing Duplicates

The method for ordering the vertices of faces and detecting duplicate faces is detailed in
this section. After establishing face adjacencies, by linking the faces that share common
facets and therefore ensuring connectivity, the next step is to ensure correct vertex
ordering and duplicate face generation. Face connectivity is managed through a facet
neighborhood adjacency data structure, where each face references adjacent faces that
share a facet. For a manifold mesh, face vertices must be ordered consistently. To ensure
that the final mesh maintains correct connectivity, a structured traversal called the

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

5.3. Dual Contouring Algorithm

(a) The octree cells which create two sets (b) Cells in blue, faces in red. The

of connected faces (in blue and red). The bottom right corner cell has been

faces would collide in the cells, occupying further refined and subdivided,

the same space. Therefore, they need to duplicate faces are prevented and
be further refined. correct topology is ensured.

Figure 5.9: Figure (a) shows the problem of faces that occupy the same cells, while
Figure (b) shows how to prevent the problem by subdividing affected cells.

face-walk is used. This process traverses adjacent faces, ordering vertices correctly and
avoiding duplicate faces.

When multiple faces align with the same octree facet, duplicate faces may be generated,
as Figure 5.9(a) illustrates. This can lead to gaps or non-manifold geometry in the final
mesh. To detect duplicates, the algorithm iterates over adjacent faces and compares their
associated cells. When a duplicate is found, the problematic cells are stored for later
subdivision. These cells are removed from the next step of the algorithm.

Figure 5.9|(a) illustrates the problem, where two sets of connected faces (blue and red)
collide within the same octree cell, which would result in a conflicting topology. To
prevent this, the affected octree cells are subdivided, as shown in Figure 5.9/(b). The
bottom right corner cell is further refined, ensuring that faces do not overlap in the same
cell.

These additional subdivision steps help maintain correct face connectivity and prevent
duplicate face generation. After all relevant cells have been identified and subdivided,
the DC algorithm iterates through the processed octree again, ensuring proper face
generation and consistent mesh topology.

Each face is defined by up to four vertices, which correspond to the octree cells that
generate it. To maintain correct vertex connectivity, these vertices must follow a consistent
ordering. The facet neighborhood structure initially stores the cells in an unordered set,
which needs to be sorted to establish a consistent vertex ordering of the face.

The ordering process follows these steps:

73

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

5.

MESH EXTRACTION WITH DUAL CONTOURING

74

1. Select an arbitrary pair of adjacent cells as the starting point
2. Search for a matching pair in the remaining list
3. Append to either the front or back of the sorted list

4. Repeat until ordered

Take, for example, the set of cell pairs that share a facet: (3,44),(15,107), (44, 107) in
Figure|5.1. These define the quad face f1, but they are unordered. Following the ordering
process, an arbitrary pair, (44, 107), is selected as the start pair. A matching pair is found
in (15,107), which shares the cell with index 107. This pair is appended in sequence.
Next, another pair that connects to 15 or 44 is searched. With (3,44), a match is found,
resulting in the following sorted list, (15,107), (44,107), (3,44).

The fourth pair is not explicitly listed since the facet neighborhood structure implicitly
defines it. This ensures a consistent vertex ordering without redundancy.

Once the face vertices are correctly sorted, the corresponding vertex positions are created
through the face-walk process. This ensures that vertices are consistently created and
that faces are properly linked across adjacent faces. Since faces are defined by the octree
cells that generate them, vertices are created at the center of each associated cell.

The algorithm iterates over all potential faces to be created for the final mesh. On
each face, the walk traverses its vertices following the face adjacency structure to ensure
consistent ordering. The face-walk iterates through all neighboring faces that share a
vertex. Each face is marked as "walked" when visited, which prevents it from being
processed multiple times. If a neighboring face has been walked, it is skipped. The walk
continues to all connected faces that share the same vertex until it reaches the starting
face, which ensures that each vertex is correctly assigned.

During the walk sequence, visited faces are stored and marked as walked. If the walk
encounters a face vertex twice, indicating a duplicate face, the corresponding cells are
marked for subdivision. Once the starting face is reached, the next vertex is selected,
and a new face-walk is performed.

Consider the face-walk process illustrated in Figure [5.10. Here, a face f; is selected as
the starting face. The algorithm then iterates over its neighboring faces, ensuring correct
vertices are created while also preventing duplicate face creation. The cells that define
fi are shown in |5.10(a). Its vertices v;j, with j = 1,2,3,4, are created by its respective
cells, as shown in 5.10/(b). The first step is to select a vertex of the starting face.

The face-walk continues with visiting all neighboring faces of the vertex v;;. Figure 5.11
illustrates all adjacent faces sharing vertex v;i, which require identification.

From one of the previously visited mesh faces, the walk continues by iterating through
neighboring mesh faces containing the selected common mesh vertex v;;. The walk stops
once the starting mesh face is reached, ensuring no mesh face is visited twice. The

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

m 3ibliothek,
Your knowledge hub

5.3. Dual Contouring Algorithm

Ji

Ji Tk

C4

C3

(a) Faces f;, fj, fr with cells ¢1, ¢z, ¢3, ca.

Figure 5.10: The face-walk process begins by selecting a starting face, such as f;. The
vertices of f; are generated by their respective cells. At each iteration, a vertex is selected

for traversal.

Figure 5.11: All faces that share the vertex v;;. These faces must be iterated over to

fir

Vi1

(%)

fi

Vig

(b) Face f; with its four face

Vi3

vertices v;1, Vi2, Vi3, V;3-

fi—|—2 fz

ensure a consistent mesh and prevent duplicate vertex generation.

75

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

m 3ibliothek,
Your knowledge hub

5.

MEsH EXTRACTION WITH DUAL CONTOURING

76

Figure 5.12: Face f; and the traversal path taken during the face-walk process. This
illustrates traversing through all neighboring mesh faces of f; that share a common mesh
vertex v;1. The dashed line indicates the path of the face-walk over the mesh faces.

face-walk now follows a path to traverse all mesh face neighbors sharing the starting mesh
vertex. Figure shows the path that the walk takes to traverse all neighboring mesh
faces of f; that share a common mesh vertex. During the walk, visited mesh faces are
recorded, newly encountered mesh faces are marked as walked, and if a duplicate mesh
vertex is visited, the corresponding octree cells (from which the mesh faces originated)
are marked for subdivision.

The affected octree cells are further refined to prevent duplicate faces and resolve
ambiguous face geometry. New cells are classified as inside, preserving correct inside-
outside transitions. As these modifications alter the octree structure, the DC algorithm
must be partially re-executed to incorporate the updated cells. After completing this
iterative process, which results in a finalized list of mesh faces with their correctly ordered
vertices, the complete mesh is generated and subsequently triangulated for rendering or
further processing.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

CHAPTER

Results & Discussion

The results of the non-uniform offset surface generation method are presented in this
chapter. The results are compared to traditional uniform offset approaches, where the
work of Pavic et al. [PKOS8] serves as a baseline, as well as other offset generation
approaches. The visual fidelity, adaptability, and effectiveness of the mesh reconstruction
step (DC) are evaluated as well. The approach uses a diverse set of meshes, varying in
different geometric and material distributions, to evaluate the robustness of the method.
If the offset distance allows for the generation of an inner offset surface, both inner and
outer offset surfaces are generated and evaluated, demonstrating their robustness and
flexibility.

6.1 Results

Figures 6.1 through 6.4 demonstrate the adaptability and robustness of the non-uniform
offset surface generation approach across diverse models and resolutions. The Armadillo
model (Figure 6.1) showcases how the method handles multiple offset distances assigned
to distinct vertices across the input mesh. In this particular model, the offset distance at
the legs was higher than the distance picked at the face. The resulting gradient creates a
cone-like distribution of the offset distances across the mesh. Despite this variation, the
global shape fidelity is preserved and both inner and outer components are successfully
extracted. Notably, the higher offset distance applied to the legs results in the merging of
the individual feet geometries, illustrating the direct influence of the offset magnitude on
local topology. This case effectively validates the approach’s ability to interpolate varying
distances across complex geometry, showing how specific offset distributions can affect
localized details while maintaining overall topological correctness. The octree depth is
fixed at level five for this mesh.

The Stanford bunny (Figures 6.2 and 6.3) is used to examine the usability of the offset
distance methods for localized and globally distributed offsets. In Figure 6.2] different

7

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

6.

REsuULTS & DISCUSSION

78

offset distances are set at each ear, where one distance is greater than the other, showing
that the method can capture small differences in asymmetry across the mesh. The
RBF-based interpolation smoothly distributes the distances across the surface, which
results in a manifold outer offset surface.

Figure 6.3 shows how the method handles the selection of a constant (in the non-uniform
case, a single) offset distance, chosen at a vertex at random. The interpolation value for
the RBF was chosen higher to better distribute the offset distances across all vertices in
the input mesh. Combined with a deeper octree (six levels), this produces a smoother,
more globally distributed offset. Interestingly, while mesh fidelity is maintained, the
offset causes some of the holes in the input mesh to merge, a sign that the influence of
the offset magnitude is high, while others remain intact, as shown in the bottom right of
the Figure.

Finally, Figure 6.4, a synthetic test case using a simple sphere as input surface, showcases
the general use of the method. Although the input geometry is uniform, picking two
vertices at the top and bottom for the offset distance introduces subtle asymmetries that
are captured in the offset surface. This highlights the robustness of the interpolation of
offset distances and the reconstruction across geometrical arrangements.

An inner component is also extracted, where the dent in the middle of the component is
the result of opposing offset values. The results are further analyzed and discussed in the
following section.

6.2 Discussion

The implications of the results presented above are analyzed in this section, highlighting
key observations and insights of the non-uniform offset surface generation method gained
during the implementation and evaluation of results. Pavic et al’s work on uniform offset
generation [PKO§| is used as a comparison, showing similarities and emphasizing the
innovations introduced in the non-uniform approach.

As the results above show, the non-uniform offset integrates well into the uniform offset
surface generation pipeline. Offset distances are controlled on a per-vertex basis, to handle
regions with drastically changing offset distances, an interpolation step is introduced.
This step smoothly interpolates the distances through the combination of the RBF with
Dijkstra-based distance propagation. This is particularly evident in the Armadillo model
(Fig. 6.1), where a higher offset value is applied to each leg and a lower one to the
head, producing a cone-like gradient. Despite the non-uniformity, both inner and outer
components were extracted correctly.

The Stanford bunny model showcases the flexibility of this method in both a localized
and a global offset distance configuration. In Figure 6.2, asymmetric values set at the
ears are smoothly propagated across the mesh using the RBF-Dijkstra interpolation.
In contrast to Fig. 6.3, which uses a single offset distance and a higher interpolation
parameter, this shows that global smoothing still preserves fine features, particularly

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M 3ibliothek,
Your knowledge hub

6.2. Discussion

Armadillo (6K) Outer (3K)

Inner (700)

Figure 6.1: Non-uniform offset surface on the Armadillo model (6k vertices). Offset
distances are specified at the head and each leg, forming a cone-shaped distribution.
Both outer and inner surfaces are extracted successfully, with 3k for the outer and 700
vertices for the inner offset component. The octree structure was generated until level
five was reached.

with a higher octree resolution, when the octree depth is increased. This example also
shows that the offset magnitude influences the surface topology, where some holes on the
input surface are merged, while others remain intact.

These examples show that the interpolation of offset distances, implemented via RBF
combined with Dijkstra-based propagation, performs reliably across both complex and
simple input geometries. The octree data structure of Pavic et al. [PK08] remains a
major part of the pipeline. It is extended to better support the varying offset distance
introduced by the non-uniform offset method. To reflect this flexibility, the subdivision
criterion is relaxed. This adjustment aims to allow for greater adaptation to complex
mesh geometries without excessive subdivision.

The DC algorithm is also adapted to handle non-uniform offset distances. In particular,
it now supports flexible leaf definitions, not just based on distance thresholds. To ensure
manifold mesh generation, it is made more robust with the help of the introduction of a
facet neighborhood data structure.

With the new facet neighborhood data structure, the algorithm can detect and eliminate

79

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

6.

REsuULTS & DISCUSSION

80

Bunny (3K) Outer (3K)

Outer (3K)

Figure 6.2: Stanford Bunny (3K vertices): asymmetric offset distances set at each ear
demonstrate localized RBF interpolation. Outer offset component with 3k vertices.
Octree level five.

duplicate faces. When needed, additional subdivision steps are triggered to resolve
topological ambiguities. This guarantees that manifold meshes are generated, even in the
cases of multiple components mentioned above. The 27-case recursion system to manage
edge and corner ambiguity also plays an integral role in producing manifold meshes.

Vertex shifting and smoothing are needed, implemented based on the Pavic et al. [PKO0S]
approach, to shift the vertices generated by DC, as the mesh extraction step generates
vertices at the cell center.

The results show that the non-uniform offset method extends the capabilities of uniform
offset approaches. With fine-grained control, it offers improved offset distance selection
capabilities while preserving topological features and computational efficiency, even where
the mesh shows geometric complexity or with asymmetric offset definitions. Despite this,
certain limitations remain and are discussed in the next section.

6.3 Limitations

Several limitations were encountered during the evaluation and are listed in this section.
As with other octree-based offset methods, including the Pavic et al. [PK08] method,

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

6.3. Limitations

Bunny (3K) Outer (29K)

a

OUtebr ,
Figure 6.3: Stanford Bunny (3K vertices): single offset seed with high interpolation factor

results in smooth, global variation. Deeper octree (level six) enables a higher fidelity,
which results in a more complex mesh with 29k vertices.

higher octree depth equals more accurate surface generation, but requires more computa-
tion time and has a higher memory consumption. This becomes a performance bottleneck
in fine-grained subdivision cases. When producing the results above, there usually seems
to be a threshold for visual fidelity and computation time, depending on, among other
factors, the vertex count of the input mesh.

DC also contributes to an increased computational overhead, specifically when there
are more octree cells to traverse. Suppose that the input mesh has regions with a high
curvature, highly variable offset distances set at the beginning, or any similar highly
complex meshes. In that case, the number of additional subdivisions during the algorithm
increases as well, which, in turn, increases the computation time during the DC algorithm.

The introduction of the interpolation step between initial offset distance seed values
set at the vertices of the input mesh may require additional fine tuning. The selection
and distribution of seed vertices have a direct impact on detail preservation. RBF
interpolation may over-smooth or propagate values too broadly. Improper placement or
over-smoothing can lead to loss of detail, especially in thin-walled areas.

When dealing with the inner and outer offset surface extraction, this method relies on
component connectivity. In thin or fragmented regions, the inner surface may be too

81

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

6.

REsuULTS & DISCUSSION

82

Sphere (500) Outer (2K)

Figure 6.4: Synthetic sphere (500 vertices): offset distances at top and bottom produce a
vertically asymmetric surface, with 2k vertices. Inner component (600 vertices) success-
fully extracted, showing a dent caused by the two opposing offset distances. Octree level
five.

Outer . Inner (600)

small to be reliably extracted, even with additional parameter tuning to guide the process.
Reliance on the extraction of the largest connected component for the outer offset surface
may exclude the desired geometry in certain meshes, such as meshes that consist of
multiple disconnected components.

Although limitations are common in octree-based meshing approaches, several of those
could be mitigated or improved upon, as discussed in the next Chapter.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

CHAPTER

Conclusion & Future work

In this thesis, a non-uniform offset framework based on the work of Pavic et al. [PKO08§] is
developed, enabling per-vertex control over the offset distance, without sacrificing mesh
quality. Instead of a constant offset distance, multiple distances are specified by the user
at some vertices of the input mesh. This method could benefit applications in CAD,
CNC applications, and three-dimensional printing, where precise local control of offset
surfaces is essential.

RBF interpolation is used to smoothly interpolate offset distances across the mesh,
supported by Dijkstra’s algorithm, to propagate distances across the vertices of the input
mesh. This combination enables the generation of a continuous, spatially varying offset
function from user-defined values. Dijkstra’s algorithm provides an efficient graph-based
approximation of geodesic distance.

The full SDF used in the original algorithm is replaced by a lighter representation to
support the varying offset distances between the vertices, edges, and triangles. The strict
SDF is no longer necessary, offset values are determined directly from the intersection
of octree cells with input primitives (sphere, truncated cone, triangle) combined with
the interpolated offset distance at those points. To accommodate the varying offset, the
subdivision criterion is relaxed. Instead of distance thresholds, it is now based on octree
cell-primitive intersections. The primitives used by Pavic et al. [PK08| were replaced to
reflect the varying distances, therefore, intersections are calculated between the cell and
sphere, truncated cone, and the triangle.

The original octree data structure, used by Pavic et al. [PKO08§]|, is maintained, and DC is
adapted to work with variable offset distances. DC is reimplemented and documented in
full detail, and additional adaptations were made to make it more robust and efficient.
Among those is a 27-case recursion for resolving ambiguous topologies, facet neighborhood
structure to detect and eliminate duplicate faces, and targeted cell subdivision to resolve
ambiguous cases and edge overlaps.

83

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

7. CONCLUSION & FUTURE WORK

84

With these changes, a robust method for variable offset generation has been introduced.
These changes resulted in a flexible and robust non-uniform offset distance generation
method that visually maintains mesh quality across diverse input geometries and varying
offset distributions. Several key insights emerged during the implementation and testing
phases:

SDF may not be strictly necessary for generating quality offset meshes in this
framework. A simpler rule based on cell-primitive intersections, combined with the
interpolated offset, appears sufficient for the cases studied

Despite its power, DC is often insufficiently documented in the literature, making its
implementation challenging, specifically in the context of offset surface generation
when used without the QEF.

It was observed that the mesh vertex shifting and smoothing step plays a significant
role in stabilizing the reconstructed surfaces and enhancing their visual fidelity,
particularly by refining vertices generated at cell centers.

For the diverse geometric and offset configurations explored in this thesis, inner and
outer offset surface extraction with component connectivity information worked
reliably, producing meshes consistent with the input parameters.

7.1 Future Work

This work has several potential areas for future research and improvement:

In terms of performance scalability, the current algorithm processes primitive
types sequentially during the octree subdivision step. While not quantitatively
benchmarked in this thesis, it is anticipated that adapting this step to perform
multi-threading on each primitive type could significantly improve performance.
Further, when considering each primitive separately, a multi-processor application
or a GPU-based approach could potentially yield substantial performance gains.
Since none of the primitive types share information with each other, the data
structures being worked on could be merged after joining each process.

The current framework controls offset distance values per-vertex. Future versions
could explore other offset distance assignments, such as a per-triangle approach
as seen in the mitered method of Cao et al. [CXG™24]. While per-vertex control
offers a high degree of flexibility, a per-triangle approach could potentially provide
a different type of localized control, for example, by allowing for uniform offset
definitions across individual mesh faces rather than interpolating from vertex values,
which might be beneficial for specific modeling requirements.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

7.1. Future Work

A detailed quantitative analysis of the impact of the mesh vertex shifting and
smoothing step on surface stability and visual fidelity, including comparisons with
and without their application, would be a valuable area for future research.

DC can be extended for broader voxel source support, beyond offsetting, for instance,
from volume scans or point clouds.

The interpolation of seed vertices of offset distance at the beginning of the algorithm
can also be further investigated. Instead of a global RBF, other methods could be
used, such as inverse distance weighting, among others.

The current implementation interpolates the offset distances across the entire mesh.

Instead, the influence region could be limited to offer more control and avoid
propagation across unrelated mesh parts.

Further comparisons with explicit SDF methods for quantitative validation of the
simplified intersection-based approach could also be researched to fully grasp its
effectiveness.

85

“jayiolgig usipn N1 1e wud ul ajge(rene si sisay) syl Jo uoisian [euibuo panoidde ay | < any 38pajmoust InoA
JeqgbBnyian yaylolqig usipn NL Jap ue 1si 1agrewoldiq Jasalp uoisiaAfeulBuQ aponipab ausiqoldde aiqg v_U:#O__ﬁ—_m

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

Overview of Generative Al Tools
Used

In this thesis, Al-based tools such as Overleaf’s "Writefull" and Grammarly were used to
assist with sentence structure, grammar, and stylistic improvements.

87

“jayiolgig usipn N1 1e wud ul ajge(rene si sisay) syl Jo uoisian [euibuo panoidde ay | < any 38pajmoust InoA
JeqgbBnyian yaylolqig usipn NL Jap ue 1si 1agrewoldiq Jasalp uoisiaAfeulBuQ aponipab ausiqoldde aiqg v_U:#O__ﬁ—_m

89

“jayiolgig usipn N1 1e wud ul ajge(rene si sisay) syl Jo uoisian [euibuo panoidde ay | < any 38pajmoust InoA
JeqgbBnyian yaylolqig usipn NL Jap ue 1si 1agrewoldiq Jasalp uoisiaAfeulBuQ aponipab ausiqoldde aiqg v_U:#O__ﬁ—_m

“jayiolgig usipn N1 1e wud ul ajge(rene si sisay) syl Jo uoisian [euibuo panoidde ay | < any 38pajmoust InoA
JeqgbBnyian yaylolqig usipn NL Jap ue 1si 1agrewoldiq Jasalp uoisiaAfeulBuQ aponipab ausiqoldde aiqg v_U:#O__ﬁ—_m

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

[Blo88]

[BPKO5]

[BS08]

[CXG124]

[Eri04]

[JC09]

[JLSW02]

[LC87]

[Len16]

[Mae99]

Bibliography

Jules Bloomenthal. Polygonization of implicit surfaces. Computer Aided
Geometric Design, 5(4):341-355, 1988.

Stephan Bischoff, Darko Pavic, and Leif Kobbelt. Automatic restoration of
polygon models. ACM Trans. Graph., 24(4):1332-1352, October 2005.

Mario Botsch and Olga Sorkine. On linear variational surface deformation
methods. IEEE Transactions on Visualization and Computer Graphics,
14(1):213-230, 2008.

Hongyi Cao, Gang Xu, Renshu Gu, Jinlan Xu, Xiaoyu Zhang, Timon
Rabczuk, Yuzhe Luo, and Xifeng Gao. Robust and feature-preserving offset
meshing, 2024.

Christer Ericson. Real-Time Collision Detection. CRC Press, Inc., USA,
2004.

David E. Johnson and Elaine Cohen. Computing surface offsets and bisectors
using a sampled constraint solver. In Proceedings of Graphics Interface
2009, GI 09, pages 31-37, Toronto, Ont., Canada, Canada, 2009. Canadian
Information Processing Society.

Tao Ju, Frank Losasso, Scott Schaefer, and Joe Warren. Dual contouring of
hermite data. ACM Trans. Graph., 21(3):339-346, July 2002.

William E. Lorensen and Harvey E. Cline. Marching cubes: A high resolution
3d surface construction algorithm. SIGGRAPH Comput. Graph., 21(4):163—
169, August 1987.

E. Lengyel. Foundations of Game Engine Development: Mathematics.
Number Bd. 1 in Foundations of Game Engine Development. Terathon
Software LLC, 2016.

Takashi Maekawa. An overview of offset curves and surfaces. Computer-
Aided Design, 31(3):165-173, 1999.

91

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

[MCS*18]

[PKO8]

[RSPO02]

[Ser83]

[SY94]

[TPBF87]

[VGMS23]

[ZCZ+24]

[ZMRLA23)

92

Wenlong Meng, Shuangmin Chen, Zhenyu Shu, Shi-Qing Xin, Hongbo
Fu, and Changhe Tu. Efficiently computing feature-aligned and high-
quality polygonal offset surfaces. Computers Graphics, 70:62-70, 2018.
CAD/Graphics 2017.

Darko Pavi¢ and Leif Kobbelt. High-resolution volumetric computation
of offset surfaces with feature preservation. Computer Graphics Forum,
27(2):165-174, 2008.

G.V.V. Ravi Kumar, K.G. Shastry, and B.G. Prakash. Computing non-self-
intersecting offsets of nurbs surfaces. Computer-Aided Design, 34(3):209-228,
2002.

Jean Serra. Image Analysis and Mathematical Morphology. Academic Press,
Inc., Orlando, FL, USA, 1983.

K. Suresh and D. C. H. Yang. Constant Scallop-height Machining of Free-
form Surfaces. Journal of Engineering for Industry, 116(2):253-259, 05
1994.

Demetri Terzopoulos, John Platt, Alan Barr, and Kurt Fleischer. Elastically
deformable models. In Proceedings of the 14th Annual Conference on Com-
puter Graphics and Interactive Techniques, SIGGRAPH ’87, page 205-214,
New York, NY, USA, 1987. Association for Computing Machinery.

Giuseppe Venturini, Niccold Grossi, Lorenzo Morelli, and Antonio Scippa.
A non-uniform offset algorithm for milling toolpath generation based on
boolean operations. Applied Sciences, 13(1), 2023.

Daniel Zint, Zhouyuan Chen, Yifei Zhu, Denis Zorin, Teseo Schneider, and
Daniele Panozzo. Topological offsets, 2024.

Daniel Zint, Nissim Maruani, Mael Rouxel-Labbé, and Pierre Alliez. Feature-
Preserving Offset Mesh Generation from Topology-Adapted Octrees. Com-
puter Graphics Forum, 42(5):12, 2023.

	Abstract
	Contents
	Introduction
	Problem Statement
	Contributions
	Structure of the Work

	State-of-the-Art and Related Work
	Overview of Offset Surface Generation
	Dual Contouring in Offset Surface Extraction
	Contributions & Advancements

	Uniform Offset Approach
	Constant Offset
	Algorithm Overview
	Octree
	Signed Distance Field Computation
	Mesh Shifting and Smoothing

	Non-Uniform Offset Approach
	Variable Offset
	Algorithm Overview
	Interpolation with Radial Basis Function
	Octree Subdivision & Non-Uniform Primitive Intersections
	Mesh Shifting and Smoothing
	Outer and Inner Offset Surface Extraction

	Mesh Extraction with Dual Contouring
	Dual Contouring
	Algorithm Overview
	Dual Contouring Algorithm

	Results & Discussion
	Results
	Discussion
	Limitations

	Conclusion & Future work
	Future Work

	Overview of Generative AI Tools Used
	Bibliography

