Information
- Publication Type: Conference Paper
- Workgroup(s)/Project(s):
- Date: September 2017
- ISBN: 978-3-03868-049-9
- Publisher: The Eurographics Association
- Location: Bonn, Germany
- Lecturer: Katharina Krösl
- Event: VMV 2017
- Editor: Matthias Hullin and Reinhard Klein and Thomas Schultz and Angela Yao
- DOI: 10.2312/vmv.20171253
- Booktitle: Vision, Modeling & Visualization
- Conference date: 25. September 2017 – 27. September 2017
- Pages: 1 – 8
- Keywords: Computing methodologies, Ray tracing, Image processing, Mesh geometry models
Abstract
Industrial applications like luminaire development (the creation of a luminaire in terms of geometry and material) or lighting design (the efficient and aesthetic placement of luminaires in a virtual scene) rely heavily on high realism and physically correct simulations. Using typical approaches like CAD modeling and offline rendering, this requirement induces long processing times and therefore inflexible workflows. In this paper, we combine a GPU-based progressive photon-tracing algorithm to accurately simulate the light distribution of a luminaire with a novel multi-resolution image-filtering approach that produces visually meaningful intermediate results of the simulation process. By using this method in a 3D modeling environment, luminaire development is turned into an interactive process, allowing for real-time modifications and immediate feedback on the light distribution. Since the simulation results converge to a physically plausible solution that can be imported as a representation of a luminaire into a light-planning software, our work contributes to combining the two former decoupled workflows of luminaire development and lighting design, reducing the overall production time and cost for luminaire manufacturers.Additional Files and Images
Weblinks
BibTeX
@inproceedings{kroesl-2017-LiteMaker,
title = "LiteMaker: Interactive Luminaire Development using
Progressive Photon Tracing and Multi-Resolution Upsampling",
author = "Katharina Kr\"{o}sl and Christian Luksch and Michael
Schw\"{a}rzler and Michael Wimmer",
year = "2017",
abstract = "Industrial applications like luminaire development (the
creation of a luminaire in terms of geometry and material)
or lighting design (the efficient and aesthetic placement of
luminaires in a virtual scene) rely heavily on high realism
and physically correct simulations. Using typical approaches
like CAD modeling and offline rendering, this requirement
induces long processing times and therefore inflexible
workflows. In this paper, we combine a GPU-based progressive
photon-tracing algorithm to accurately simulate the light
distribution of a luminaire with a novel multi-resolution
image-filtering approach that produces visually meaningful
intermediate results of the simulation process. By using
this method in a 3D modeling environment, luminaire
development is turned into an interactive process, allowing
for real-time modifications and immediate feedback on the
light distribution. Since the simulation results converge to
a physically plausible solution that can be imported as a
representation of a luminaire into a light-planning
software, our work contributes to combining the two former
decoupled workflows of luminaire development and lighting
design, reducing the overall production time and cost for
luminaire manufacturers. ",
month = sep,
isbn = "978-3-03868-049-9",
publisher = "The Eurographics Association",
location = "Bonn, Germany",
event = "VMV 2017",
editor = "Matthias Hullin and Reinhard Klein and Thomas Schultz and
Angela Yao",
doi = "10.2312/vmv.20171253",
booktitle = "Vision, Modeling & Visualization",
pages = "1--8",
keywords = "Computing methodologies, Ray tracing, Image processing, Mesh
geometry models",
URL = "https://www.cg.tuwien.ac.at/research/publications/2017/kroesl-2017-LiteMaker/",
}