Only show images of the current year.

X-Mas Cards

Every year a christmas card showing aspects of our research projects is produced and sent out.
more info about this project | more images of this project

VRVis Competence Center

The VRVis K1 Research Center is the leading application oriented research center in the area of virtual reality (VR) and visualization (Vis) in Austria and is internationally recognized. You can find extensive Information about the VRVis-Center here
more info about this project | more images of this project

Smart Communities and Technologies: 3D Spatialization

The Research Cluster "Smart Communities and Technologies" (Smart CT) at TU Wien will provide the scientific underpinnings for next-generation complex smart city and communities infrastructures. Cities are ever-evolving, complex cyber physical systems of systems covering a magnitude of different areas. The initial concept of smart cities and communities started with cities utilizing communication technologies to deliver services to their citizens and evolved to using information technology to be smarter and more efficient about the utilization of their resources. In recent years however, information technology has changed significantly, and with it the resources and areas addressable by a smart city have broadened considerably. They now cover areas like smart buildings, smart products and production, smart traffic systems and roads, autonomous driving, smart grids for managing energy hubs and electric car utilization or urban environmental systems research.

3D spatialization creates the link between the internet of cities infrastructure and the actual 3D world in which a city is embedded in order to perform advanced computation and visualization tasks. Sensors, actuators and users are embedded in a complex 3D environment that is constantly changing. Acquiring, modeling and visualizing this dynamic 3D environment are the challenges we need to face using methods from Visual Computing and Computer Graphics. 3D Spatialization aims to make a city aware of its 3D environment, allowing it to perform spatial reasoning to solve problems like visibility, accessibility, lighting, and energy efficiency.
more info about this project | more images of this project

Advanced Visual and Geometric Computing for 3D Capture, Display, and Fabrication

This Marie-Curie project creates a leading European-wide doctoral college for research in Advanced Visual and Geometric
Computing for 3D Capture, Display, and Fabrication.
more info about this project | more images of this project

Visual Computing: Illustrative Visualization

more info about this project | more images of this project

Real-Time Shape Acquisition with Sensor-Specific Precision

Acquiring shapes of physical objects in real time and with guaranteed precision to the noise model of the sensor devices.
more info about this project | more images of this project

Path-Space Manifolds for Noise-Free Light Transport

The project aims to develop new statistical and algorithmic methods to improve light-transport simulation for offline rendering.
more info about this project | more images of this project

MAKE-IT-FAB: Modeling of Shapes for Personal Fabrication

The aim of this project is to investigate and to contribute to shape modeling and geometry processing for personal fabrication---a trend that currently receives intensified attention in the science and industry. Our goal is to contribute novel algorithmic solutions for fabrication-aware shape processing and interactive modeling.
more info about this project | more images of this project

ILLUSTRARE: Integrative Visual Abstraction of Molecular Data

FWF - I 2953-N31
Integrative Visual Abstraction of Molecular Data
more info about this project | more images of this project

BioNetIllustration: User Centric Illustrations of Biological Networks

more info about this project | more images of this project

Visual Information Foraging on the Desktop

The goal of this project is to design and develop novel interactive visualization techniques to support knowledge workers in making sense of their unstructured, dynamic information collections.
more info about this project | more images of this project

Data-Driven Procedural Modeling of Interiors

The project develops new procedural modeling methods for interior scenes.
more info about this project | more images of this project