Information
- Publication Type: Technical Report
- Workgroup(s)/Project(s):
- Date: August 2002
- Number: TR-186-2-02-10
- Keywords: shape-based interpolation, conjugate gradient method, volume rendering
Abstract
In this paper a novel technique for smooth shape-based interpolation of volume data is introduced. Previously simple linear interpolation of signed distance maps has been used in practice. As it will be shown, this approach results in artifacts, since sharp edges appear along the original slices. In order to obtain a smooth 3D implicit function generated by interpolating 2D distance maps, we use a global interpolation method instead of a higher order local technique. The global curvature of the implicit function representing an isosurface is minimized using an iterative conjugate gradient method. Because of the iterative approach the user can easily control the trade-off between the smoothness of the isosurface and the computational cost of the refinement. As opposed to previous techniques, like variational interpolation, our method can generate a reasonably good approximation of the ideal solution in a significantly shorter time.Additional Files and Images
Weblinks
No further information available.BibTeX
@techreport{Csebfalvi-2002-SBICG,
title = "Smooth Shape-Based Interpolation using the Conjugate
Gradient Method",
author = "Bal\'{a}zs Cs\'{e}bfalvi and L\'{a}szl\'{o} Neumann and
Armin Kanitsar and Eduard Gr\"{o}ller",
year = "2002",
abstract = "In this paper a novel technique for smooth shape-based
interpolation of volume data is introduced. Previously
simple linear interpolation of signed distance maps has been
used in practice. As it will be shown, this approach results
in artifacts, since sharp edges appear along the original
slices. In order to obtain a smooth 3D implicit function
generated by interpolating 2D distance maps, we use a global
interpolation method instead of a higher order local
technique. The global curvature of the implicit function
representing an isosurface is minimized using an iterative
conjugate gradient method. Because of the iterative approach
the user can easily control the trade-off between the
smoothness of the isosurface and the computational cost of
the refinement. As opposed to previous techniques, like
variational interpolation, our method can generate a
reasonably good approximation of the ideal solution in a
significantly shorter time.",
month = aug,
number = "TR-186-2-02-10",
address = "Favoritenstrasse 9-11/E193-02, A-1040 Vienna, Austria",
institution = "Institute of Computer Graphics and Algorithms, Vienna
University of Technology ",
note = "human contact: technical-report@cg.tuwien.ac.at",
keywords = "shape-based interpolation, conjugate gradient method, volume
rendering",
URL = "https://www.cg.tuwien.ac.at/research/publications/2002/Csebfalvi-2002-SBICG/",
}