
Documentation - Group Pac3D

Leo Preissegger (12122526), Enisa Azizovic (01228809)

14. Juni 2023

1 Feature Description

1.1 Collision Detection and Physics
Collision Detection is used to prevent the player from going throw walls and to detect when the player hits ghosts or
coins. Collisions are reported to the code using onTriggerEnter, onTriggerExit, onCollisionEnter, onCollisionExit
callbacks. In the game it is possible to shot projectiles at ghosts. To do so: new entities are created and a force is added to
them. Another feature of the physics implementation is the use of raycasts. It is used to prevent the camera from going into
walls and to check if ghosts can see the player, so they can chase him.

Following Colliders are supported: Box Collider, Sphere Collider, Capsule Collider, Trinagle Collider and Convex Collider.

Triangle Colliders and Convex Colliders must be cooked using the PhysX Cooking library. The meshes used to do so are
loaded from AssetFiles, the same way how it’s done for rendering.

Another feature of the engine that the game uses is a CharacterController. It can be used via the CharacterControllerCom-
ponent. A character controller is basically a kinematic rigid body with a few extra things. It cannot go throw walls and has
a feature to automatically climb stairs, for example.

All of this is implemented using the PhysX library.

1.2 Heads-Up Display
The heads up display is implemented with a batch-renderer, that renders quads after the other parts of the scene have
been rendered. For every UI primitive another shader is used. This shaders support outlining of circles and rectangles. Text
rendering is done by using a font atlas that is generated at the beginning, with characters loaded from FreeType.

The batching is done by combining all elements of the same primitive type and the same z-index into a single Vertex Buffer
and rendering them together. The distinction between z-indices is needed to archive proper transparency sorting.

Resources used to implement batch rendering: TheCherno - Batch Rendering (YouTube)

The HUD shows the amount of lives the player has left and how many projectiles he can shoot at the moment. Additonally
there is a start screen, lose screen and win screen.

To configure The HUD the following component is used: UICanvasComponent

1.3 Shadow Map with PCF
The game supports shadows for objects in the world. This is implemented using Cascading Shadow Maps and PCF. For every
frame 4 shadow maps are rendered (4 cascades) from the light point of view. Every cascade handles different parts of the
camera frustum, to achieve better shadow quality and move the shadow maps with the camera movement. It is also possible
to decide if shadows should be casted from any given object.

For now the game supports shadows for only one directional light.

1.4 Bloom/Glow
The Bloom implementation uses a technique known as Physically based Bloom. It works by down sampling the final image
a few times. After that the smallest image is upsampled again and combined with the next larger image. This is done until
we are back at the start resolution. Finally the bloom image is blended together with the scene image.

Articles describing the technique: Next Generation Post Processing in CALL OF DUTY: ADVANCED WARFARE, Lear-
nOpenGL

1

https://github.com/Liioooo/cgue23-pac3D/blob/master/docs/md/COMPONENTS_DOCS.md#boxcollidercomponent
https://github.com/Liioooo/cgue23-pac3D/blob/master/docs/md/COMPONENTS_DOCS.md#boxcollidercomponent
https://github.com/Liioooo/cgue23-pac3D/blob/master/docs/md/COMPONENTS_DOCS.md#boxcollidercomponent
https://github.com/Liioooo/cgue23-pac3D/blob/master/docs/md/COMPONENTS_DOCS.md#boxcollidercomponent
https://github.com/Liioooo/cgue23-pac3D/blob/master/docs/md/COMPONENTS_DOCS.md#boxcollidercomponent
https://github.com/Liioooo/cgue23-pac3D/blob/master/docs/md/COMPONENTS_DOCS.md#charactercontrollercomponent
https://github.com/Liioooo/cgue23-pac3D/blob/master/docs/md/COMPONENTS_DOCS.md#charactercontrollercomponent
https://www.youtube.com/watch?v=Th4huqR77rI&list=PLlrATfBNZ98f5vZ8nJ6UengEkZUMC4fy5
https://github.com/Liioooo/cgue23-pac3D/blob/master/docs/md/COMPONENTS_DOCS.md#uicanvascomponent
https://www.iryoku.com/next-generation-post-processing-in-call-of-duty-advanced-warfare
https://learnopengl.com/Guest-Articles/2022/Phys.-Based-Bloom
https://learnopengl.com/Guest-Articles/2022/Phys.-Based-Bloom


1.5 Physically Based Shading
The renderer is using PPR for all geometry. It supports: albedo, roughness, metalness, emission and and a normal map. The
before mentioned values can also be used from texture maps.

For lighting the following light sources are supported: Directional Light, Point Light, Spot Light and Image Based Lighting,
more on that in 1.7.

Following resources were used to implement it: LearnOpenGL, Filament PBR

1.6 Normal Mapping
Normal mapping works by using data from a normal map instead of vertex normals. As the normal map is in tangent space,
every vertex needs tangent and bitangent vectors. Using the tangent, bitangent and normal a TBN matrix is constructed,
that is used to transform normals from tangent to world space. Normal mapping only works for imported assets, not for built
in meshes, because they have no tangents and bitangents defined.

1.7 Environment Map
Environment mapping in the game is implemented by using image based lightning. To do this a HDRi texture is loaded and
preprocessed. While preprocessing, two CubeMaps are calculated via Compute-Shaders for later use: Irradiance Map (Diffuse
light) and Radiance/Prefilter Map (Specular light).

For the radiance map, different roughness levels are stored in different mip-Levels. The irradiance map is computed by
convoluting the HDRi, because every pixel on the hemisphere has influence on the light at the fragment.

Following resources were used to implement it: LearnOpenGL

1.8 Animation & Vertex Skinning
Animation can be done easily by updating the Transform Component TransformComponent every frame in the onUpdate
callback.

It is also possible to load skeletal animation from Asset files. This can be done via the AnimatedMeshRendererComponent.
The implementation works by loading all the Bones, their vertex weights and the animation data. Every frame the animation
data is interpolated to compute the current state. The actual skinning is done on the GPU using a compute shader. We
are using a compute shader and not the vertex shader, because we need the skinned data more than once per frame. In the
compute shader a new Vertex Buffer is written, that is used in all subsequent operations.

Following resources were used to implement it: LearnOpenGL, OGDev

1.9 Adjustable Parameters
Application wide parameters can be set in settings.ini. Examples for parameters there are: resolution, fullscreen, refresh-
rate, v-sync, anisotropic-filtering, shadow-map-resolution, startScene.

Scenes are created and loaded via XML Files. In this file the complete scene hierarchy can be parameterized. Some other
things like Materials and PhysicsMaterials are also defined via XML files.

2 Libraries
Following libraries were used to implement the above described features:

Name Link Usage
spdlog https://github.com/gabime/spdlog Logging in the Game (useful for debugging)
inih https://github.com/benhoyt/inih Reading of .ini files
glfw https://github.com/glfw/glfw Window management abstraction
glm https://github.com/g-truc/glm OpenGL Mathematics (GLM)
glad https://glad.dav1d.de/ OpenGL extension loading
pugixml https://pugixml.org/ Loading and parsing of XML files
stb_image https://github.com/nothings/stb Loading textures from files
assimp https://github.com/assimp/assimp 3D Model loading
PhysX https://github.com/NVIDIA-Omniverse/PhysX 3D Physics
FreeType https://freetype.org/index.html Font loading

2

https://github.com/Liioooo/cgue23-pac3D/blob/master/docs/md/COMPONENTS_DOCS.md#directionallightcomponent
https://github.com/Liioooo/cgue23-pac3D/blob/master/docs/md/COMPONENTS_DOCS.md#directionallightcomponent
https://github.com/Liioooo/cgue23-pac3D/blob/master/docs/md/COMPONENTS_DOCS.md#directionallightcomponent
https://github.com/Liioooo/cgue23-pac3D/blob/master/docs/md/COMPONENTS_DOCS.md#directionallightcomponent
https://learnopengl.com/PBR/Theory
https://google.github.io/filament/Filament.md.html
https://learnopengl.com/PBR/IBL/Diffuse-irradiance
https://github.com/Liioooo/cgue23-pac3D/blob/master/docs/md/COMPONENTS_DOCS.md#transformcomponent
https://github.com/Liioooo/cgue23-pac3D/blob/master/docs/md/COMPONENTS_DOCS.md#animatedmeshrenderercomponent
https://learnopengl.com/Guest-Articles/2020/Skeletal-Animation
https://ogldev.org/www/tutorial38/tutorial38.html
https://github.com/gabime/spdlog
https://github.com/benhoyt/inih
https://github.com/glfw/glfw
https://github.com/g-truc/glm
https://glad.dav1d.de/
https://pugixml.org/
https://github.com/nothings/stb
https://github.com/assimp/assimp
https://github.com/NVIDIA-Omniverse/PhysX
https://freetype.org/index.html


3 List of Implemented Gameplay and Effects
• Gameplay

– Mandatory

∗ 3D Geometry

∗ Playable

∗ Advanced Gameplay

∗ Min. 60 FPS and Framerate Independence

∗ Win/Lose Condition

∗ Intuitive Controls

∗ Intuitive Camera

∗ Illumination Model

∗ Textures

∗ Moving Objects

∗ Documentation

∗ Adjustable Parameters

– Optional

∗ Collision Detection (Basic Physics)

∗ Advanced Physic

∗ Heads-Up Display

• Effects

– Shadow Map with PCF

– GPU Vertex Skinning

– Environment Map

– Simple Normal Mapping

– Physically Based Shading

– Bloom/Glow

All listed tasked were implemented in the game. Detailed descriptions for some of the tasks can be found in 1.

4 Other Special Features
Some particularly interesting aspects of the code are described here.

4.1 Entity Component System
Every object in the game is represented as an entity. Every entity has components attached to it, to store data about it. The
structure of the scene can be loaded from a scene file on startup or when switching scenes. Entities and components can be
dynamically added or destroyed.

This system is implemented without the use of any libraries.

All components available are described in section: 6.

Resources used: A SIMPLE ENTITY COMPONENT SYSTEM (ECS) [C++]

4.2 Scripting
To every entity a script can be attached via the ScriptComponent. These scripts are updated every frame via onUpdate and
lateUpdate. There are also callbacks from the Physics Engine as mentioned in 1.1.

The Scripting system is heavily inspired by the Unity Engine.

3

https://austinmorlan.com/posts/entity_component_system/
https://github.com/Liioooo/cgue23-pac3D/blob/master/docs/md/COMPONENTS_DOCS.md#scriptcomponent


4.3 Renderer
The renderer in the game has a full HDR Rendering pipeline. That uses a few render passes: ShadowMapPass, PreDepthPass,
GeometryPass, SkyboxPass, PhysicsColliderPass, NormalsDebugPass, DebugLinesPass, BloomPass, ScreenPass, UiPass.

As one can guess many of the passes are just for debugging, but for that purpose extremely useful.

The PreDepthPass is used to generate a Depth Buffer without using a Fragment shader. This is done to prevent necessary
overdraw in subsequent passes, to improve performance.

Every frame all objects that should be rendered are submitted to the Renderer to be processed later. This is useful, because
with the information of all objects, the renderer can instance objects together.

5 Walk-through
In order to win the game you have to collect 80 per cent of the red coins, while avoiding the ghosts. If you are hit by are
ghost, you are respawned. This can happen four times, before you are out of lives and lose the game.

To defend against ghosts, you can shoot projectiles

6 Component Docs
Following Components can be used in the engine:

• TransformComponent

• MeshRendererComponent

• AnimatedMeshRendererComponent

• CameraComponent

• ScriptComponent

• DirectionalLightComponent

• PointLightComponent

• SpotLightComponent

• SkyboxComponent

• BoxColliderComponent

• RigidBodyComponent

• SphereColliderComponent

• CapsuleColliderComponent

• TriangleColliderComponent

• ConvexColliderComponent

• CharacterControllerComponent

• UiCanvasComponent

Component docs can be found here: GitHub

4

https://github.com/Liioooo/cgue23-pac3D/blob/master/docs/md/COMPONENTS_DOCS.md

	Feature Description
	Collision Detection and Physics
	Heads-Up Display
	Shadow Map with PCF
	Bloom/Glow
	Physically Based Shading
	Normal Mapping
	Environment Map
	Animation & Vertex Skinning
	Adjustable Parameters

	Libraries
	List of Implemented Gameplay and Effects
	Other Special Features
	Entity Component System
	Scripting
	Renderer

	Walk-through
	Component Docs

