
Note: all online sources referenced in this document were last accessed on 10.06.2024

ROYAL HEIST

GitHub https://github.com/e1007167/ptvc24-RoyalHeist

Students Jan König, 01007167
Julia Weiss, 11908091

Genre Jumping Game

Goal Pick up all three treasures and then escape in time

API OpenGL

Dev. Status Finished

Story In the kingdom's heart gripped by tyranny, the resistance launches a fiery assault
on the royal district. This is but a diversion concealing the master thief's infiltration
of the castle. With this attempt to steal the royal artifacts of power, they seek to
overthrow the spiteful ruler.

Gameplay Navigating a narrow path avoiding falling off and reaching the end of the level within
the given time. Along the way the player must employ daring jumps and collect all
treasures. Falling into the abyss or running out of time should be avoided to win.

Controls ● WASD: move player character (no diagonal move)
● Space: Jump
● Mouse: rotation and pitch
● ESC: Quit
● P: pause / continue
● N: quick restart (skips intro)
● M: mute / unmute
● U: unlimited time (only if presentationMode is active)
● ENTER: toggle Fullscreen
● F1: toggle wire-frame mode
● F2: toggle back-face culling mode
● F3: decrease gamma
● F4: increase gamma
● F5: toggle FPS counter

FEATURES

optional
Gameplay

Collision Detection Player can collide with objects and floor

Advanced Physx Character controller with applied forces

Advanced Gameplay Collectables and a timer

HUD Displays the remaining time, text notifications

Effects Modelling - CPU Particle System Rising Ash and falling fire sparks as a global
weather effect

Animation - GPU Vertex Skinning Player character animation

Texturing - Dynamic Environment
Map

An info point in the starting area implements a
cubemap for dynamic environment mapping

Post Processing - Lens Flares Looking at the sun creates a lens flare effect

https://github.com/e1007167/ptvc24-RoyalHeist

Royal Heist uses OpenGL, PhysX and CMake. Some of the basic mechanics include
jumping or moving. Advanced gameplay elements include collectables, three endgame
states as well as a timer. To win, pick up all collectables and reach the end of the level. To
lose, run out of time or fall to your death.

A camera is implemented in the class RoyalCamera.h. The camera is based on a guide1 but
has been modified. Most noticeably, the camera is bound to a PhysX controller and cannot
move individually. Instead, input moves the controller and the camera follows with an offset.

PhysX 5 is being used for various physics simulations:
- collision detection (e.g. the controller collides with objects)
- raycasting (s. Lens Flare for description of the implementation)
- moving object2 (the player character representation in the PhysX engine)

Advanced Physics is implemented by using a kinematic object for the player character
which is moved by applying forces via displacement vectors and gravitational pull.
Furthermore, raycasting uses callbacks to the PhysX engine to react to certain events (e.g.
the player model blocks the sun).

An illumination model provides a material to each geometry. Materials define the look of
objects by providing an alpha value and attenuation. A directional light has been defined
representing the sun. Normal vectors define how light interacts with geometries.

Textures are being loaded via DevIL and STB. For this to work an image loader class
exists and multiple texture classes extending the template's texture class. Textures are either
provided as JPG files or as DDS files with an alpha value and no pre-generated mipmaps.
Mipmaps are generated by OpenGL via specification in the texture classes.

3D Models are being loaded via Assimp. Three collectables & the player model are loaded
via the package Model. The implementation is based on the guide3 referenced on TUWEL.

A HUD (s. package GUI and Freetype) has been implemented using a 2D quad rendering
text via FreeType (according to this guide4) and a 2D quad rendering a GUI-background.
The HUD is used for showing a countdown and various text notifications during the game.

Variables can be changed via the settings file or live user input:
● automatic detection of the monitors aspect ratio can be toggled via the settings files

variable monitorAspectRatioDetection
● window width & height can be adjusted in the settings file

NOTE: set monitorAspectRatioDetection to false to test custom window resolution
● vSync can be toggled in the settings file
● gamma can be set in the settings file (range: 0.01, 10.0) or via player input
● fullscreen mode can be toggled via the settings file or via player input

4 LearnOpenGL Tutorial: https://learnopengl.com/In-Practice/Text-Rendering
3 LearnOpenGL Tutorial: https://learnopengl.com/Model-Loading/Assimp
2 Controller: https://nvidia-omniverse.github.io/PhysX/physx/5.2.1/docs/CharacterControllers.html
1 LearnOpenGL Tutorial: https://learnopengl.com/Getting-started/Camera

https://learnopengl.com/In-Practice/Text-Rendering
https://learnopengl.com/Model-Loading/Assimp
https://nvidia-omniverse.github.io/PhysX/physx/5.2.1/docs/CharacterControllers.html
https://learnopengl.com/Getting-started/Camera

GPU Vertex Skinning has been implemented based on a tutorial5 and a YouTube playlist6.
The player character uses skeletal animation and GPU based skinning. A hierarchical bone
structure for each animation (generated via Adobe Mixamo7) is loaded via Assimp. The
current animation is dependent on game state & player input. Depending on the delta since
the last render two neighboring key frames of the animation are chosen and their bone
transforms are interpolated to create a framerate independent animation.

Furthermore, Animation Blending has been implemented by adding a second interpolation
step. Two animations are tracked at all times, the new animation, and last animation. A blend
factor is computed by normalizing the delta since the new animation started. For each bone
of the new animation the corresponding bone of the last animation is fetched. For this pair of
bones one can’t simply interpolate between their local transforms. Instead, we interpolate
their pairs of translation, rotation and scale matrices from which we can infer the final local
transform.

A Lens Flare effect is implemented in the package Effects/LensFlare using 2D-quad
rendering based on a tutorial by ThinMatrix8 and a guide9 referenced on TUWEL. When
looking at the sun the effect is visible. The visibility is controlled in three ways:

1. the sun's position in clip space defines the brightness of the effect
2. the distance to the info point object affects the brightness of the effect
3. raycasting for toggling the effect when an object (e.g. jumping player) blocks the sun

A CPU Particle System using instancing was implemented. The effect is based on the
guide10 referenced on TUWEL. The implementation can be found in the package
Effects/ParticleSystem. The effect is used as a global weather and can be seen anywhere in
the scene. Two different modes of operation exist:

1. spark mode: renders sparks of a fire falling down (reddish particles)
2. ash mode: renders ashes slowly rising up into the air (grayish particles)

A cubemap and skybox for dynamic environment mapping are implemented in the
package Effects/CubeMap. The implementation is based on a guide11 referenced on TUWEL
& a guide by ThinMatrix12. The skybox renders the horizon in the distance and the dynamic
cubemap is used for the info point object at the very start of the level. Since the scene is
black behind the starting point of the level, the effect is best seen when running around the
info point and looking at it from the other side. The cubemap reflects the scene dynamically
at 60 FPS. A virtual camera takes snapshots from the cubes POV for each face which are
used for sampling.

irrKlang is used to play sounds. A custom sound manager class is being used (s. package
Sound) which can fade sounds & effects conditionally using a complex logic provided by us.

12 ThinMatrix Tutorial: https://youtu.be/lW_iqrtJORc?feature=shared
11 LearnOpenGL Tutorial: https://learnopengl.com/Advanced-OpenGL/Cubemaps

10 OpenGL-Tutorial Tutorial:
https://www.opengl-tutorial.org/intermediate-tutorials/billboards-particles/particles-instancing/

9 Lens Flare Tutorial: https://youtu.be/OiMRdkhvwqg?feature=shared
8 ThinMatrix Tutorial: https://youtu.be/OiMRdkhvwqg?feature=shared
7 Adobe Mixamo: https://www.mixamo.com/
6 OGLDEV YouTube Tutorial: https://youtu.be/r6Yv_mh79PI?feature=shared
5 LearnOpenGL Tutorial: https://learnopengl.com/Guest-Articles/2020/Skeletal-Animation

https://youtu.be/lW_iqrtJORc?feature=shared
https://learnopengl.com/Advanced-OpenGL/Cubemaps
https://www.opengl-tutorial.org/intermediate-tutorials/billboards-particles/particles-instancing/
https://youtu.be/OiMRdkhvwqg?feature=shared
https://youtu.be/OiMRdkhvwqg?feature=shared
https://www.mixamo.com/
https://youtu.be/r6Yv_mh79PI?feature=shared
https://learnopengl.com/Guest-Articles/2020/Skeletal-Animation

Notable additional features that are not explicitly part of any effect or gameplay category:
- blur used for pause screen (s. package Effects/Blur and the blur shader package)
- complex logic for managing animation blending (s. GPU Vertex Skinning above)
- render FPS counter to screen (enable via settings.ini or by pressing F5)
- a pause menu using a scene texture (or render target) with post processing applied
- game state based loading screens (title, loading, failed, success) including

complex logic for fade ins and fade outs (s. Package GameStateScreen and
GameLogic)

- game state based shader, sound and sound-effect modifications (e.g. light color
and alpha values change when getting closer to the info point, pitch and echo applied
during pause)

- a level builder (or more accurately, a class to handle all scene objects) which
creates PhysX objects, geometries or both depending on the parameters of a custom
game object (s. package GameObject)

- a quick restart function (press ‘N’)
- narration for the intro and outro as well as sounds. All were manually edited to

create a uniform soundscape
- window aspect ratio automatically matches monitors (unless deactivated in

settings.ini)
- a presentation mode is implemented, which grants unlimited time
- the game can be muted and unmuted via keyboard callback

Guide
Before the time runs out:

1. collect all three treasures
2. only then reach the goal which is now highlighted by a compass

Sources & Libraries
● PhysX 5 for collision detection and a kinematic player controller object
● glad (including KHR) for easier access of OpenGL functions
● Freetype for text rendering
● DevIL for loading DDS-image-files and STB for loading JPG-image-files
● Assimp for loading models
● irrKlang used as the audio engine
● textures: level textures, sun, bag of gold, chest, map, skybox, player model
● animations, compass
● sounds: fire, bgm, narrator, battle sounds, step, thud, jump, item, ambient drone,

game over, item pickup, win, clock

https://nvidia-omniverse.github.io/PhysX/physx/5.1.0/
https://glad.dav1d.de/
https://github.com/KhronosGroup/EGL-Registry/blob/main/api/KHR/khrplatform.h
https://freetype.org/
https://openil.sourceforge.net/
https://github.com/nothings/stb
https://assimp.org/
https://www.ambiera.com/irrklang/downloads.html
https://www.cg.tuwien.ac.at/courses/Textures/
https://opengameart.org/content/sun-0
https://free3d.com/3d-model/bag-of-gold-v1--110517.html
https://free3d.com/3d-model/treasurechest-v2--976536.html
https://free3d.com/3d-model/pirate-treasure-map-scroll-v1--897332.html
https://skyboxgen.com/
https://www.mixamo.com/
https://www.mixamo.com/#/?page=1&type=Motion%2CMotionPack
https://sketchfab.com/3d-models/compass-rose-b209af3e8f6f4544ad209294cc988551
https://pixabay.com/sound-effects/fireplace-with-crackling-sounds-2-min-rk-178392/
https://pixabay.com/de/music/umgebungs-old-cosmic-entity-117617/
https://elevenlabs.io/
https://youtu.be/nJTyTFi9Tho?feature=shared
https://pixabay.com/de/sound-effects/concrete-footsteps-6752/
https://pixabay.com/de/sound-effects/land2-43790/
https://pixabay.com/de/sound-effects/land2-43790/
https://pixabay.com/de/sound-effects/portal-phase-jump-6355/
https://pixabay.com/de/sound-effects/ambient-wave-48-tribute-17243/
https://pixabay.com/de/sound-effects/060359-piano-resonance-9-42074/
https://pixabay.com/de/sound-effects/scale-e6-14577/
https://pixabay.com/de/sound-effects/success-1-6297/
https://pixabay.com/de/sound-effects/clock-ticking-ambience-202980/

