
Race Out of Space 3202
Julian Zeilinger1 and Dominik Forkert2

1e12122540@student.tuwien.ac.at
2e0825483@student.tuwien.ac.at

BRIEF DESCRIPTION OF IMPLEMENTATION

In this game you navigate a spaceship through a tubular environment filled with obstacles. Interaction between ingame
objects are handled by the PhysX library with an object damage system based on event callbacks .
Each ingame object is registered with the EntityManager class which dynamically handles object creation/destruction as
well as controller input, buffer updates, and draw calls.
The game employs a custom multipass rendering pipeline to handle shadowmapping and bloom effects. Compatibility
of this pipeline with the ECG framework is ensured via the class ECGInterals which exposes internal ECG variables
otherwise hidden.
Additional implementation details for each gameplay feature and effect are provided in the sections below.

ADDITIONAL LIBRARIES
In addition to the ECG framework, the following libraries are used:

• TinyOBJ [11]
• Dear ImGui [4]
• PhysX [8]

CONTROLS
The table below describes the mouse and keyboard controls currently implemented in the game.

Key Action
Mouse left-click Drag camera
Mouse right-click Strafe camera

Mouse scroll Zoom camera
A, D Strafing in the horizontal plane of the spaceship
W, S Accelerating / decelerating
Q,E Rolling along the forward axis

Space Braking
Esc Quitting the game
F1 Toggle wireframe mode
F2 Toggle backface culling mode
F3 Toggle camera lock
F4 Toggle HUD
F5 Toggle Tessellation mode for player spaceship
F6 Toggle Tessellation level



IMPLEMENTED FEATURES
Compulsory Features

Points Item Description

6 3D Geometry
All models in-game (such as player ship or containers) are imported via
the TinyOBJ library [11].

3 Playable Control the player spaceship using the keyboard controls described in the section above.
3 Advanced Gameplay Evasion of static and dynamic obstacles.

3
Min. 60 FPS and
Framerate Independence

Framerate independent game-speed is implemented via glfwGetTime()
in the class DeltaTime; to deactivate VSync change present mode immediate
to true and adjust refresh rate accordingly in /bin/assets/settings.ini.

3 Win/Lose Condition
Win: reach the end of the level.
Lose: player health drops to 0.

3 Intuitive Controls Genre-typical keyboard controls as described in the section above.
3 Intuitive Camera Third-person camera which can be adjusted via mouse as described in the section above.

2 Illumination Model
Currently 1 point light and 1 global light;
per-object materials are defined in the entityUniqueGraphics struct;
normal vectors are imported via OBJ.

2 Textures Currently all models imported via TinyOBJ have textures attached.
2 Moving Objects Player ship and containers are dynamic PhysX objects.
1 Documentation This PDF file.
1 Adjustable Parameters Can be adjusted via the Settings.ini file in the game directory.

Optional Gameplay Features

Points Item Description

4 Collision Detection (Basic Physics)
Simulation of dynamic and static objects based on PhysX [8];
collision events with damage model based on simulated collision forces.

6 Advanced Physics See above.
0 Heads-Up Display Implementation based on the Dear ImGui library [4] (no points).

Effects

Points Item Description

16 Shadowmap with PCF
implemented via a separate render sub-pass based on the tutorials [9], [10];
artifacts (shadow acne, Peter panning) are prevented via variable depth
bias and focusing the center of the shadowmap on the player spaceship.

20 Subdivision surfaces
Implemented via tessellation shaders based on algorithm [17] and tutorial [5]
for the player spaceship mesh.

8 Vertex Shader Animation
Force fields at the level boundaries based on time- and space-dependent vertex
offsets using a periodic sine function (no particular tutorial used).

8 Environment Map
Implemented as part of the PBR pipeline using both, an irradiance cube-map for diffuse
reflections and a pre-filter cube-map for specular reflections; based on tutorials [6], [7].

16 Physically-based Shading Texture-based PBR according to tutorial [7].

8 Bloom
Gaussian Bloom effect using special emit textures per model in an additional off-screen
render sub-pass; based on tutorial [3].

2/3



ACKNOWLEDGMENTS
The following models are used under the Attribution 4.0 International licence [1]:

• Space Ship [18]: unmodified
• Space Station Modules [15]: only parts of the model scene are shown in-game
• Post Apocalyptic Shipping Container [16]: unmodified

The following textures are used under the Attribution-ShareAlike 3.0 IGO licence [2]:

• The colour of the sky from Gaia’s Early Data Release 3 environment map [14]: original image converted to cubemap

REFERENCES
[1] Attribution 4.0 International. https://creativecommons.org/licenses/by/4.0/legalcode.
[2] Attribution-ShareAlike 3.0 IGO. https://creativecommons.org/licenses/by-sa/3.0/igo/.
[3] Bloom (Sascha Willems Vulkan examples). https://github.com/SaschaWillems/Vulkan/tree/

master/examples/bloom.
[4] Dear ImGui. https://github.com/ocornut/imgui/.
[5] Model tessellation (Sascha Willems Vulkan examples). https://github.com/SaschaWillems/Vulkan/

tree/master/examples/tessellation.
[6] PBR image based lighting (Sascha Willems Vulkan examples). https://github.com/SaschaWillems/

Vulkan/tree/master/examples/pbribl.
[7] PBR (Learn OpenGL). https://learnopengl.com/PBR/Theory.
[8] PhysX. https://github.com/NVIDIAGameWorks/PhysX/.
[9] Shadow Mapping (Learn OpenGL). https://learnopengl.com/Advanced-Lighting/Shadows/

Shadow-Mapping.
[10] Shadow mapping (Sascha Willems Vulkan examples). https://github.com/SaschaWillems/Vulkan/

tree/master/examples/shadowmapping.
[11] TinyOBJ library. https://github.com/tinyobjloader/tinyobjloader/.
[12] Vulkan-Dev. https://vkguide.dev.
[13] Vulkan-Tutorial. https://vulkan-tutorial.com.
[14] ESA/Gaia/DPAC. The colour of the sky from Gaia’s Early Data Release 3. https://www.esa.int/

ESA_Multimedia/Images/2020/12/The_colour_of_the_sky_from_Gaia_s_Early_Data_
Release_32. License: CC BY-SA 3.0 IGO.

[15] re1monsen. Space Station Modules model. https://skfb.ly/oBurs. License: CC Attribution.
[16] S. Virmani. Post Apocalyptic Shipping Container model. https://skfb.ly/6vqYF. License: CC Attribution.
[17] A. Vlachos, J. Peters, C. Boyd, and J. L. Mitchell. Curved PN triangles. In Proceedings of the 2001 symposium on

Interactive 3D graphics, pages 159–166, 2001.
[18] yanix. Space Ship player model. https://skfb.ly/LzKz. License: CC Attribution.

3/3

https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by-sa/3.0/igo/
https://github.com/SaschaWillems/Vulkan/tree/master/examples/bloom
https://github.com/SaschaWillems/Vulkan/tree/master/examples/bloom
https://github.com/ocornut/imgui/
https://github.com/SaschaWillems/Vulkan/tree/master/examples/tessellation
https://github.com/SaschaWillems/Vulkan/tree/master/examples/tessellation
https://github.com/SaschaWillems/Vulkan/tree/master/examples/pbribl
https://github.com/SaschaWillems/Vulkan/tree/master/examples/pbribl
https://learnopengl.com/PBR/Theory
https://github.com/NVIDIAGameWorks/PhysX/
https://learnopengl.com/Advanced-Lighting/Shadows/Shadow-Mapping
https://learnopengl.com/Advanced-Lighting/Shadows/Shadow-Mapping
https://github.com/SaschaWillems/Vulkan/tree/master/examples/shadowmapping
https://github.com/SaschaWillems/Vulkan/tree/master/examples/shadowmapping
https://github.com/tinyobjloader/tinyobjloader/
https://vkguide.dev
https://vulkan-tutorial.com
https://www.esa.int/ESA_Multimedia/Images/2020/12/The_colour_of_the_sky_from_Gaia_s_Early_Data_Release_32
https://www.esa.int/ESA_Multimedia/Images/2020/12/The_colour_of_the_sky_from_Gaia_s_Early_Data_Release_32
https://www.esa.int/ESA_Multimedia/Images/2020/12/The_colour_of_the_sky_from_Gaia_s_Early_Data_Release_32
https://skfb.ly/oBurs
https://skfb.ly/6vqYF
https://skfb.ly/LzKz

	References

