Speedway:

Overview:

The framework used is OpenGL, based on the Framework provided by the course.
Game logic and physics are handled over Physx4.1 while rendering is done in OpenGL.

1920x1080 screen size is default, but can be changed through ini file.

Detailed Classes Explanation:
Main:
Methods:

The main method intitalizes OpenGL and PhysX, loads textures and models and creates the
objects for the main game loop. Every visible PhysX object is rendered as a OpenGL object.
After initializing OpenGL and window, a loading screen is presented until all other objects are
loaded.

For the player character, PxCapsuleController is used. User inputs are handled using mouse
button and key callback functions, setting different boolean variables to true on press or false
on release to allow for multi key input at the same time.

Those booleans are used in the updateCharacterMovement() and updateCharacterSize()
functions. When a direction (forward, backward, left, right) is true, velocity is added in this
direction in relation to the current camera position (returned by the update function of the
camera).

isGrounded() is used to check if the character is currently moving on the y axis, and sets the
boolean deciding if we are already jumping. If not jumping, the jump key adds velocity to the
y direction, with negative velocity being added every frame that is jumping.

When a character turns smaller or bigger, we check if they are already min or max size, and
if not change the size of the controller and corresponding Geometry object.

The current size also affects velocity at a 50% rate ((1+curren.tSize)/2).

Controls:

AWSD are used for x and y axis directions
Space for jump

Q to turn water in ice

RMB and LMB to turn bigger and smaller
Mouse movement to change view direction
ESC to quit

V for debug mode flying



Main Loop:

In the main loop, every loop a new deltatime is measured. If deltatime < 1/60 (desired fps)
the game logic loop is skipped.

In the game logic loop, character size and movement are updated and applied, the scene is
simulated, and the OpenGL objects transformed accordingly. The playerCamera position is
updated, and returns our ForwardVector used for leftVector and movement. Events and
CursorPosition are polled outside of the game loop and Objects rendered every frame
regardless of game logic skipping frames.

GamePlay:

Reach the goal found on the platform above past the waves and big block as fast as
possible (triggers win screen). The movement inputs are always relative to camera position
(forward = forward).

Water can be turned into walkable ice by holding the “Q” button while entering the trigger
shape of the water.

There is a game over trigger under the map. It is currently found by touching the outside of
the big plattform at the start (triggers game over screen) or walking into the water without
turning it to ice.

By becoming larger, the players can move quicker and jump further, but can use turning
smaller to get past platforms (like the big block blocking the path).

PlayerCamera:

PlayerCamera is used for both the _viewProjectionMatrix and _cameraDirection using
std::vec3 and glm::mat4. It is created with a starting position, field of view and a boolean to
use first or third person, since we want to find out which one fits the playstyle better.

On update, the x and y mouse offset are calculated and used to create a direction vector
from the player characters position (newPosition). The y axis is used for the camera, but
ignored for the returned forwardVector. The other variables are also calculated in the update
and then queried with getters, e.g. viewProjectionMatrix for shaders and Yaw for character
rotation matrix.

changeSize() changes the field of view to simulate a change in size of the playerCharacter.
Camera

Taken from ECG and only used for debugging.

Shader2d, Texture2d, SpriteRenderer

Based on https://learnopengl.com/In-Practice/2D-Game/Setting-up with adjustments to be
used for rendering loading, win and lose screens in 2d and fixed image colors. Uses
stb_image library.

Also used by our Implementation of LensFlare and Particle Systems


https://learnopengl.com/In-Practice/2D-Game/Setting-up

Geometry:

Taken from ECG for a base of simple Shapes and adjusted with scale&rotate methods, as
well as own methods for more complicated Shapes. Scale and rotation for the object of a
room and model of the main character was made with blender.

IniReader, Material, Shader, Texture, Light, Utils:

From ECG. Where applicable for our gameplay and graphics goals, changed or replaced by
own implementations.

Level:
Level was build with blender

Platforms:
System of moving platforms and their simple animation.

Scripting Language Integration:

Using general LUA script to alter on a fly speed/jump of character. Behavior/movement of
trap. Speed of a platforms

Tutorial:

https://www.youtube.com/watch?v=415HdmPoynw

Heads-Up Display:
Using SpriteRenderer to draw HUD. Non-trivial HUD can be drawn with discard on the side
of fragment shader. F4 - switch off/on

Waterlce:

Turning of water into ice was implemented as static rigid body. Initially the rigid body is
outside of a space of water and the main character can fall in a trigger space of gameover.
When the character switch water to ice - we can use an ice platform to pass water

Model and loading of an object:

Model is loaded with tinyobjloader library from Vulkan tutorial. It can load vertices, indices
and uv-coordinates for one texture: https://vulkan-tutorial.com/Loading_models

Model from this tutorial was loaded as starting area: viking_room.obj, viking_room.png
Vertices and indexes are used for cooking of PhysX rigid static bodies as well.

For character was used free to use model of tibetan fox with one texture:


https://www.youtube.com/watch?v=4l5HdmPoynw
https://vulkan-tutorial.com/Loading_models
https://vulkan-tutorial.com/resources/viking_room.obj
https://vulkan-tutorial.com/resources/viking_room.png

https://open3dmodel.com/3d-models/tibetan-fox 482026.html

For trigger of the ending of a game for this prototype was used free model of a trophy
FlareManager:

Based on the tutorial from https://www.youtube.com/watch?v=0iMRdkhvwgg which is made
in Java, we converted it to C++ and adjusted it with our file structure. When the sun object is
in the screens field of view, an array of lens flare textures with alpha values is rendered on a
vector from screen center to sun position.

ParticleGenerator:

Based on this tutorial:
http://www.openqgl-tutorial.org/intermediate-tutorials/billboards-particles/particles-instancing/

but made into a callable class with methods and using our existing Rendering, Texture and
Shader classes. Creates a colourful smoke like effect that should look like an aurora
borealis. 2D textures are rotated with playercamera direction inputs to create this effect while
saving processing time, since the implementation is done GPU side.

Baked lightning:

For static objects that have baked lightning, a new object with new uv-maps was created
with corresponding diffuse texture and lightmaps(direct+indirect light) with the same
resolution. In leaves.frag shader these 2 textures are mixed. The same operation was made
for every object with baked lightning as joining all objects of a scene could cause
unexpected uv-mapping errors.

Based on tutorial:

https://youtu.be/VS4rgkgmg7yY

https://youtu.be/Y 1yrGxJ9g3M

Video textures:

Two textures for a plane were created. These textures are updating every frame. Video for
this texture was converted in 24 fps and after with VLC player frames of this video were
saved as images and converted into .dds format for a texture of material.

Vertex shader animation:

A Sub-divided plane(water) or sphere(lava) with a big amount of vertices is used to make a
small distortion of points on a side of the vertex shader water.frag with periodic
functions(wave effect). Uniform of time is used to create animation.

Based on tutorial:

https://youtu.be/5yhDb9dzJ58

Simple normal mapping:

Normal map was sent as uniform in fragment shader to make illumination of point light of an
object with a baked texture. Point light is moving.

Tutorial:

https://learnopengl.com/Advanced-Lighting/Normal-Mapping


https://open3dmodel.com/3d-models/tibetan-fox_482026.html
https://www.youtube.com/watch?v=OiMRdkhvwqg
http://www.opengl-tutorial.org/intermediate-tutorials/billboards-particles/particles-instancing/
https://youtu.be/5yhDb9dzJ58

Additional Libraries used:

tiny_obj_loader, PxPhysicsAPI



Known Issues/Work in Progress:

- lce/Water interaction with button doesnt work if already touching object, will be fixed

- Character Model is visually smaller than character controller object. All interactions
are tested with controller object, visual object will be adjusted

- Jump doesnt work if running downwards objects, will try to fix this one

- Moving Platforms currently in main with fixed values, will be moved to external class
after more pressing issues are fixed

- Possibly not all memory allocations are released at the end of game, working on it



