
Documentation 
Group/Game Name: Run Pingu Run! 

 

Brief description of implementation: 

“Run Pingu Run!” is a brief 3-level game. Pingu moves through the map in search of his igloo. 

He tries to avoid getting eaten by seals or bumping into snow piles and getting stunned. 

Collecting fish helps him stay alive longer. Each level has a different terrain and increases in 

complexity by generating more enemies, snow pile obstacles and fish. 

 

Additional libraries: 

ASSIMP for object loading: https://github.com/assimp/assimp 

Bullet for collision detection: https://github.com/bulletphysics/bullet3 

Audio effects (we looked at how audio was used): https://github.com/OnixMarble/Titan-Voyager-

Custom-Game-Engine 

 

Gameplay: 

Mandatory: 

● 3D Geometry: Our models (penguin, seals, fish, piles, igloo) were made with 

Blender. We imported the models with the ASSIMP library. You can view them in 

the folder assets/models. 

● Playable: Pingu can move in all 4 directions and jump. The game can be directly 

started via the .exe file in the bin folder of executable2-runpingurun. 

● Advanced Gameplay: The sizes of the seals, snow piles and fish are initialized 

with a random scale. The said objects appear at randomly calculated places 

within a specific range on the map on every level. The seals move in randomly 

calculated directions. When a seal eats a fish, its speed is reduced. Collecting 

the fish helps you not get eaten and lose the game. You can bump into snow 

piles that slow you down. 

● Min 60 FPS and Framerate Independence: The game runs at 60 fps and is 

framerate independent. 

● Win/Lose Condition: You win if you clear all 3 levels by reaching Pingu’s igloo on 

every level. You lose if a seal collides with you, and you haven’t collected any 

fish beforehand or if the time for clearing the level is up or if you step outside the 

terrain. For both cases you get a distinct sound. 

● Intuitive controls: We use similar keys that are used in other games for 

movement. We have the WASD keys (W – forward, A – left, S – backward, D - 

right). If you press any of them continuously, you’ll move in the defined direction. 

Space is for jumping. C is for camera toggle (see “Intuitive Camera”). 

● Intuitive Camera: The camera can be toggled. We have a camera that is fixed 

onto Pingu at a specific angle as a 3rd person perspective that follows him when 

he’s in motion. The other camera is a free moving camera which can orbit around 

Pingu when moving the mouse left and right, change the angle view when 

moving the mouse down and up and zoom in and out when using the mouse 

https://github.com/assimp/assimp
https://github.com/bulletphysics/bullet3
https://github.com/OnixMarble/Titan-Voyager-Custom-Game-Engine
https://github.com/OnixMarble/Titan-Voyager-Custom-Game-Engine


scroller. When playing with this camera mode Pingu moves relative to the 

direction of the camera, which is controlled by the mouse (he moves wherever 

the camera is pointed at). 

● Illumination model: The whole scene is illuminated by a directional light. The fish 

represent point lights. 

● Textures: Pingu uses a texture, which can be found under assets/models 

(Penguin_body.png). The “You win!” and “You lose!” signs at the end of the 

game use textures as well. You can find them in the folder assets/textures. We 

use a cube map for environmental mapping. You can find the textures in the 

folder assets/textures/cubemap. 

● Moving Objects: The seals move on their own in randomly calculated directions 

within the bounds of the terrain. When a seal is fed, it reduces its speed. Pingu 

moves and jumps by pressing WASD and Space respectively (see “Intuitive 

Controls”). 

● Documentation: This document. 

● Adjustable Parameters: Parameters such as screen resolution, fullscreen mode, 

refresh rate and brightness can be adjusted from the settings.ini file in the folder 

assets. 

 

Optional: 

● Collision Detection (Basic Physics): We use the Bullet library for collision 

detection between objects. All objects plus the terrain have a defined rigid body. 

Pingu, the seals and the terrain have simpler rigid bodies for faster performance. 

The rigid bodies can be visualized with the F3 key. 

● Advanced Physics: All objects have rigid bodies. Pingu and the seals move along 

with their rigid bodies. All hits between objects are registered by Bullet and are 

handled according to the game rules. 

● Heads-up Display: Information about the current game state (on which level the 

player is, how many fishes Pingu currently has, how much time the player has to 

finish the level, a hint for quitting the game when pressing “ESC”) is displayed on 

top of the screen. The HUD can be toggled when you press the H key. We found 

this tutorial helpful for our implementation: https://learnopengl.com/In-

Practice/2D-Game/Render-text 

 

Effects: 

Advanced Modelling: 

● CPU Particle System: When Pingu moves, a long particle trial appears behind 

him. If Pingu hits a snow pile, particles fly from the top of the pile. We found this 

tutorial helpful for our implementation: https://learnopengl.com/Advanced-

OpenGL/Instancing 

Terrain: 

● Tessellation from Height Map: We use a height map and tessellation shaders to 

create and display a curvy terrain. The rigid body has a smaller number of 

triangles that approximate the result of the tessellation algorithm for performance 

https://learnopengl.com/In-Practice/2D-Game/Render-text
https://learnopengl.com/In-Practice/2D-Game/Render-text
https://learnopengl.com/Advanced-OpenGL/Instancing
https://learnopengl.com/Advanced-OpenGL/Instancing


purposes. Depending on the height, different colors are used in the fragment 

shader to mimic water and snowy surfaces. We found this tutorial helpful for our 

implementation: https://learnopengl.com/Guest-

Articles/2021/Tessellation/Tessellation. Our heightmaps in assets/textures are 

smaller cut-outs taken from the tutorial from the previous chapter of the same 

website: https://learnopengl.com/Guest-Articles/2021/Tessellation/Height-map 

Animation: 

● Hierarchical Animation: Pingu moves his feet when in motion. He can move his 

eyes left to right. He can open and close his beak while simultaneously moving 

his eyebrows. The mentioned moving parts are separate meshes that rotate at 

an appropriate angle. 

Texturing: 

● Environment Map: For a more realistic feel of the game a cloudy background 

environment was implemented with cube maps. The clouds also reflect onto the 

whole terrain. We found this tutorial helpful for our implementation: 

https://learnopengl.com/Advanced-OpenGL/Cubemaps 

Shading: 

● Cel Shading: Pingu, the seals, the fish, the snow piles and the terrain have a 

segmentation of the gradient. This effect is implemented in shaders and can be 

switched on and off with the F4 key. 

Post Processing: 

● Contours via Edge Detection: Pingu, the seals, the snow piles and the fish have 

a distinct contouring. This effect is implemented in a post processing shader and 

can be switched on and off with the F5 key. We found this website with examples 

helpful for our implementation: https://www.shadertoy.com/results?query=sobel 

For implementing post-processing effects such as Cel Shading and the Contours via 

Edge Detection we used this tutorial: https://learnopengl.com/Advanced-

OpenGL/Framebuffers 

 

Walk-through: 

 

Objects: 

• Pingu: You are Pingu (the penguin). You can move around with the keys WASD 

(forward, left, back, right) and Space (jump). Pingu appears at a random position in the 

near left region of the map. 

• Seals: They are the seal models that appear at first at random positions on the map 

away from Pingu and move randomly. If you collide with one without having collected 

any fish beforehand, you lose and get a “You lost!” sign. If you have fish, you won’t get 

hurt and the seal will turn a darker cyan because you “fed” it and now you have one fish 

less. If the seal collides with a fish, it will again turn a darker cyan because it ate the fish 

and will slow down its speed. A seal that is fed (is a darker cyan color) is no longer a 

threat to you even if you bump into it without any fish. 

• Fish: They are the pink figures that glow. They appear at random positions at lower 

levels of the terrain (like they are in water). They don’t move. If you collide with one, you 

https://learnopengl.com/Guest-Articles/2021/Tessellation/Tessellation
https://learnopengl.com/Guest-Articles/2021/Tessellation/Tessellation
https://learnopengl.com/Guest-Articles/2021/Tessellation/Height-map
https://learnopengl.com/Advanced-OpenGL/Cubemaps
https://www.shadertoy.com/results?query=sobel
https://learnopengl.com/Advanced-OpenGL/Framebuffers
https://learnopengl.com/Advanced-OpenGL/Framebuffers


collect one fish, and it disappears. If a seal collides with one, it disappears. Upon 

collision you can hear a pop sound indicating that the fish has been collected. 

• Piles: They are the white-grey rock-like structures. They don’t move. If you collide with 

one, you jump back and are stunned, which means you can’t move for a bit (2 seconds). 

• Igloo: It appears randomly in the far-right corner of the map. If you collide with it, you 

start the next level or win and get a “You won!” sign if you are on the 3rd level (which is 

the last level). 

 

How to play: 

There are a total of 3 levels. Each new level increases Pingu’s speed, the number of seals and 

their speed, the number of snow piles and fish. 

Your goal is the same for each level: Reach the igloo. Do so by moving towards it and avoiding 

collisions with the seals and snow piles. Collect fish to ensure you won’t get eaten. If you clear 

all 3 levels, you win. If you walk outside of the terrain or get eaten, you lose. 


