
 Documentation
 Group/Game Name: Getting Home
 Brief description of implementation: Getting Home is a 3D platformer game, which was
 implemented using OpenGL.
 Additional libraries: GLFW, GLEW, Assimp model loading library, Bullet physics library

 Gameplay:
 Mandatory:

 ● 3D Geometry: We made our own models for the rocket, rocket parts, and stone
 platforms, which are loaded using the Assimp library. There are platforms with
 cube geometry that are generated programmatically.

 ● Playable: We implemented a 3D platformer game, where the player can jump on
 floating platforms, which are both static and moving.

 ● Advanced Gameplay: There are 6 rocket parts scattered all over the level that
 have to be collected to win. There is a time limit, and if it runs out the player
 loses, however every collected item adds some extra time.

 ● Min 60 FPS and Frame Rate Independence: The game runs at 60 fps and all
 movement (player, platform movement, animations) use delta time to calculate
 movement.

 ● Win/Lose Condition: The player loses the time runs out (shown in the top right
 corner of the HUD). They win if they collect all 6 rocket parts in time.

 ● Intuitive controls: We use typical 3D game controls: WASD for movement and
 space for jumping. The camera angle can be controlled by moving the mouse.

 ● Intuitive Camera: The camera always points in the direction the player is moving.
 While standing still, the camera can be moved around the player to get a view of
 the surroundings.

 ● Illumination model: We use directional lighting as well as multiple point lights so
 every part of the level is illuminated properly.

 ● Textures: Our game supports loading models with textures given by .mtl files,
 manually attaching a loaded texture to a model, and attaching a shader texture to
 a model.

 ● Moving Objects: Some of the platforms are moving between two given points.
 The movement affects the player when standing on them.

 ● Documentation:
 ● Adjustable Parameters:

 ■ F1: Wireframe mode
 ■ F2: Backface culling
 ■ F3: Fullscreen

 In settings.ini:
 ■ Refresh rate
 ■ Brightness multiplier (gamma)

 Other keymappings:
 ■ F4: Bullet Debug Shader (causes framerate drop, only for demonstration)
 ■ F5: Reset player position to 0,0,0
 ■ F6: Turn off time limit
 ■ F7: Toggle HUD
 ■ Resize the window while in windowed mode

 Optional:
 ● Collision Detection (Basic Physics): All items in the levels have collision, which is

 implemented using the Bullet library. The player can stand on and get moved by
 the platforms. The collectibles are removed from the world when the player
 collides with them.

 ● Heads-up Display: A heads-up display shows the items that have been collected
 (top left corner) and the time left (top right corner). Win and lose screens are also
 rendered using the heads-up display.

 Effects:
 Advanced Modelling:

 ● CPU Particle System: Over the rocket in the middle of the level, black smoke can
 be seen, which is implemented using CPU particles. We mostly used this tutorial
 for the particles/instancing, and changed it to render textures as particles.
 https://levelup.gitconnected.com/how-to-create-instanced-particles-in-opengl-24c
 b089911e2

 Animation:
 ● Hierarchical Animation has been implemented where any animation applied to a

 mesh also transforms its child meshes. Animations can be set by providing
 different transformations as keyframes. This can be seen on the player, which
 bounces up and down while the legs also individually move. Also on the rocket,
 which bounces and also has a rotating animation on the legs.

 Texturing:
 ● Procedural Texture: A procedural texture is used on the ground of the level, to

 create the effect of a strange moving planet surface. Specifically, we used a
 shader that implements Fractal Brownian Motion. For this we found an existing
 shader on Shadertoy and adapted it to look nice with our game:
 https://www.shadertoy.com/view/llsSzB

 Shading:
 ● Physically Based Shading: All platforms and some of the collectible objects use

 physically based shading using the Cook-Torrance model, where the result is
 calculated from 5 different given textures (albedo, normal, metallic, roughness,
 ao). The shader used for this was found from LearnOpenGL’s lighting/PBR
 tutorial: https://learnopengl.com/PBR/Lighting and the textures were taken from
 https://freepbr.com/ which was also recommended in the tutorial.

https://levelup.gitconnected.com/how-to-create-instanced-particles-in-opengl-24cb089911e2
https://levelup.gitconnected.com/how-to-create-instanced-particles-in-opengl-24cb089911e2
https://www.shadertoy.com/view/llsSzB
https://learnopengl.com/PBR/Lighting
https://freepbr.com/

 Walk-through:
 The game starts with the player in the middle of the level, with floating platforms located all
 around you. You can see that there are objects on some of the platforms at the top. You will
 have to jump upwards on the platforms in order to reach the collectibles. The controls are
 WASD to move and SPACE to jump. On the top right corner, you can see the remaining time.
 There is not really a linear walkthrough here as the items can be collected in any order, but you
 have to find out what order the platforms can be jumped on. Items that have been collected are
 shown in the top left corner. You also restore some time when you collect an item. When all 6
 collectibles have been collected, a win screen is shown. If the time runs out, a game-over
 screen is shown. On the win/game-over screen, you can quit the game with ESC.

