
Start the game by pressing ENTER.
Then use WASD to move around.
Find the odd-one-out among the trees (The one which is moving VERY slightly.)
If successful, you are redirected back to the game menu = darkness.
Why is my game menu just black? Find an explanation below.

I implemented the following tasks:

● 3D Geometry: I implemented an Assimp model loader. In my game, it succesfully
handles .obj and .dae files. Everything in my environment is retrieved via the object
loader.

● Playable + Advanced Gameplay: I implemented a game which is very different to my
proposal. In my game, the player is a little cube thrown into a forest. All the trees are
static - except one which moves slightly. If the player touches this tree, the game is won.
The game can be started by pressing ENTER. Then use WASD for controlling the cube.
I actually had a user interface implemented (with text output). However, it clashed with
Assimp and I could not resolve the issue. That is why I removed it again.

● Min. 60 FPS and Framerate Independence: The speed of the player and the animated
tree trunk are adapted to the current framerate, making the game framerate
independent. FPS >= 60.

● Win/Lose Condition: The player wins when he finds the odd one out among the trees.
● Intuitive Controls: WASD + ENTER = very commonly used.
● Illumination Model: I added materials and a directional light source. However, as I am

aiming for a comic-style look, I commented out the code in the shader. In animation.frag
simply comment out the code and delete line 48 to display an illuminated scene.

● Textures: Even though very simple (one color), all objects are imported and rendered
with their textures.

● Moving Objects: Only one tree moves slightly. That’s the point of the game, though.
● Documentation: You are currently reading it.

● GPU Vertex Skinning: One of the trees is animated. Followed the tutorial on
learnopengl.com.

● Contours via Edge Detection: Followed the tutorial referenced below the assignment.
I rendered the normals into a separate Renderbuffer. Then I extracted the edges with a
Sobel operator.


