
Submission 2 1

Submission 2
Group/Game Name: #69 / Frisbee Frenzy

Description of Implementation

Features
Frisbee Game where you have to throw a frisbee around some obstacles into a
target area to win the game. There are moving obstacles in the game, that have to
be avoided. It is a third-person game. All Objects are loaded in using the assimp
library. The game uses cel-shading + edge detection as a postprocessing effect. It
also features shadow-maps and procedural textures.

General
Our game is devided into two levels. At the beginning the first level is loaded by loading
.obj file using assimp-library to the _geometryMap, where all objects of a level are
stored. The classes AssimpGeometry and AssimpMesh are written with the help of this
learnOpenGL tutorial: LearnOpenGL - Assimp. In the main render loop, this map gets
iterated through and all objects are drawn. Furthermore in the loop the scene is
rendered into a framebuffer object which has a color attachment. This Texture is then
used to acchieve the post processing effect of edge detection (more on that in the
section “Effects”). For objects that need to be updated, we wrote the update function,
which is called every frame.

Movement & camera
In RUNNING status, the player can move freely using the WASD keys. The function
processInput(…) listens to key events and moves the player and camera to the correct
position. When throwing a disc, the position is fixed and only the camera rotation is
possible.

void processInput(GLFWwindow* window, float deltaT) {
 if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS)
 glfwSetWindowShouldClose(window, true);

 float cameraSpeed = static_cast<float>(_cameraSpeed * deltaT);
 if (glfwGetKey(window, GLFW_KEY_W) == GLFW_PRESS)
 cameraPos += cameraSpeed * cameraFront;
 if (glfwGetKey(window, GLFW_KEY_S) == GLFW_PRESS)
 cameraPos -= cameraSpeed * cameraFront;

https://learnopengl.com/Model-Loading/Assimp

Submission 2 2

 if (glfwGetKey(window, GLFW_KEY_SPACE) == GLFW_PRESS)
 cameraPos += cameraSpeed * cameraUp;
 if (glfwGetKey(window, GLFW_KEY_LEFT_CONTROL) == GLFW_PRESS)
 cameraPos -= cameraSpeed * cameraUp;
 if (glfwGetKey(window, GLFW_KEY_A) == GLFW_PRESS)
 cameraPos -= glm::normalize(glm::cross(cameraFront, cameraUp)) * cameraSpeed;
 if (glfwGetKey(window, GLFW_KEY_D) == GLFW_PRESS)
 cameraPos += glm::normalize(glm::cross(cameraFront, cameraUp)) * cameraSpeed;
}

The camera listens to mouse movement events with the mouse_callback(...) function.
Using the x-position and y-position, the offset is calculated and viewing direction are
adapted accordingly. The camera and the player’s movement are implemented with
help from the leanOpenGL totorial: LearnOpenGL - Camera.

Moving Obstacles
All Moving obstacles are transformed using the same principle. A modified model matrix
is applied to simulate continuous movement of the model. For instance, the thrown disc
is first translated to the origin to perform a safe rotation, and then moved back to
simulate movement in the throwing direction. This creates the illusion of throwing an
actual rotating disc in the air. The update is performed every frame in the render loop.
For the other obstacles, such as the opening door and moving wall, only the translate
operator is applied under the restrictions of minimum and maximum position.

if (_discMovement < maxDiscMovement && _discFlying) {
//rotate disc in flight
frisbeeModel->transform(glm::translate(glm::mat4(1), -discPosition));
frisbeeModel->transform(glm::rotate(glm::mat4(1), glm::radians(-3.0f), glm::vec3(0, 1, 0)));
frisbeeModel->transform(glm::translate(glm::mat4(1), discPosition));
frisbeeModel->transform(glm::translate(glm::mat4(1), _discDirection * discSpeed * deltaT));
_discMovement += discSpeed * deltaT;
}

HUD
The HUD was implemented by loading images from files using the SFML library. The
images were then rendered onto a 2D-quad using orthographic projection. This
implementation can be found in the hud.cpp/hud.h class as well as in the hud.vert and
hud.frag shaders. Shader handling is done by the Shader.h file from the ECG-
framework.

Controls
WASD: move the player.

https://learnopengl.com/Getting-started/Camera

Submission 2 3

STRG + Space: move up and down.

E: Pick up the disc if near it

H: Toggle HUD

If in throwing mode: LEFT_MOUSE_BUTTON: drag up or down to control the
distance of the throw. release button to throw.

R: Reload level

B: Win the level (debug)

1 + 2: quick-switch between levels

Q or ESC: Quit the game

Effects

Cel-Shading
The main shader for the program is a cel-shader, wich can be found in cel.frag. Cel
shading was chosen to acchieve a cartoon stlye game. This is done by having only 4
layers of different light values, as calculated in the cel function of the fragment shader.

vec3 cel(vec3 n, vec3 l, vec3 diffuseC) {
 float d = length(l);
 l = normalize(l);
 vec3 r = reflect(-l, n);
 float diffuseF = max(0, dot(n, l));
 float quantizedDiffuse = floor(diffuseF * levels) / levels;
 return quantizedDiffuse * diffuseC;
}

Edge-Detection
Complementing our cel-shading, we have implemented edge detection as a
postprocessing effect. I have not found great tutorials about this topic, as i wanted to
acchieve a special look. After loosing way too many hours on this topic, i finally came to
a solution. I used the depth-values from the scene in combination with the normals of
the scene to get all edges between differen geometries. These values were stored in a
Framebuffer object that the main scene is rendered to in the render loop. There are
three color attachments to this framebuffer: one for depth, one for normals and one for
the cel shaded colors. These three textures are then used in the edge.frag shader to
color all fragments correctly. The scene is then finally rendered to a screen sized quad
with all effects combined.

Submission 2 4

Framebuffer-Tutorial: LearnOpenGL.com

Procedural Textures
Procedural textures were implemented using noise. This was achieved by writing a
function that generates a 2D checkered grid with yellow and dark gray colors. In the
dark gray cells, the generated noise is visible in the form of larger noise blocks, giving it
a carbon-like look. The texture is generated using the fragment shader.

Procedural Textures-Tutorial: upvector.com

Shadow Maps with PCF
To acchieve this effect, we render the scene from the perspective of the light into a
framebuffer object. This fbo has a cubemap attachment to store the depth-values of the
scene in all six directions of the light (we use a point light as main light so the shadows
have to be casted in every direction). When making the main shading run with the
cel.frag shader, the shadow is calculated for each fragment using the depth information
from the cubemap. In this method a bias is introduced to take care of any shadow-acne.
We tried very hard to find a way to get rid of the peter panning as well, but couldnt find a
way, where both acne and panning were eliminated. We therefore settled on this
solution, where we have no shadow acne, but very noticable peter panning. PCF is
implemented by taking multiple samples around the fragment and then averaging the
results to get smooth shadow-edges.
Shadow maps have been implemented with help of this learnOpenGl turorial.

mandatory gameplay features implemented
3d Geometry, Playable, Advanced Gameplay, Min 60 FPS and Framerate
Independence, Win/Lose Condition, Intuitive controls, Intuitive Camera, Illumination
model, Textures, Moving Objects, Documentation

Libraries
Assimp (Object Loader): https://github.com/assimp/assimp

stb 2.28 (Image Loading): https://github.com/nothings/stb

https://learnopengl.com/Advanced-OpenGL/Framebuffers
http://www.upvector.com/?section=Tutorials&subsection=Intro%20to%20Procedural%20Textures
https://learnopengl.com/Advanced-Lighting/Shadows/Point-Shadows
https://github.com/assimp/assimp
https://github.com/nothings/stb

