
Beerpocalypse
Documentation – Submission 2 (Final Game)

Marc Putz Fabian Holzschuster
12024709 12025338

The Game
The game takes place in a Zombie apocalypse where the player needs to find beer collecIbles to finish
the level. Zombies will aLack the player as soon as they see him, so the player must shoot them
beforehand. The player needs to explore the map and find all beer collecIbles, which they need to finish
the game. The game is won aPer the player has found and collected all beer boLles. The game is lost
when the Zombies aLack the player too much and they lose all their health.

Some boLles may be hidden from the player and aren’t accessible immediately. This is the puzzle
element of our game, where the player needs to find a hidden buLon in order to progress to new,
previously hidden, areas.

All ways the player can interact in the game are listed in the “Controls” secIon. The game also contains
various sound effects (shooIng, walking, zombie grunts, etc.).

Gameplay Hint: At one part, the player needs to find a wooden crate to jump onto in order to reach a higher pla8orm and
progress. Another part requires the player to find a bu<on to make a fake wall disappear.

Controls
The game’s main controls are all explained in the Pause Menu, which is accessed by pressing the ESC key.
They are:

• WASD Move Around
• L SHIFT Sprint
• Mouse Look Around
• Scroll wheel Increase/Decrease FOV
• Spacebar Jump
• LMB Shoot
• E Interact
• R Reload
• F Toggle Flashlight On/Off
• ESC Pause/Unpause
• +/- (Numpad) Increase/Decrease Brightness (Exposure)
• Page Up/Down Increase/Decrease Gamma
• Arrow Up/Down Increase/Decrease Volume

Furthermore, the game has various debug features that can also be toggled on or off. The key bindings
can be seen in the Debug HUD (accessible by pressing F10). These are:

• F10 Toggle Debug HUD Menu
• F1 Toggle Wireframe
• F2 Toggle Backface Culling
• F3 Toggle Game HUD GUI
• F4 Toggle Normal Mapping
• F5 Show Normals
• F6 Toggle Bloom

• F7 Enable/Disable Zombie Pathfinding
• F8 Enable/Disable Infinite Jumping

Also, a third-person camera is implemented for debug purposes (not meant for normal gameplay as this
is a first-person game). It can be toggled by pressing:

• C Switch First/Third Person Camera

Implementa1on of Gameplay and Effects
Most of our implementaIon was done by following online tutorials and reference links provided by the
LVA team, PhysX calls were mostly done by taking a deep look at the online NVIDIA PhysX API.

Compulsory Gameplay
• 3D Geometry (6 Points)

The game is implemented in OpenGL as a 3D game and can render all types of 3D geometry. This
does not only include simples like Cubes, Spheres, etc., but it’s also possible to load complex 3D
meshes and display them in-game. Loading Meshes is done by using the “assimp” library.

• Playable (3 Points)
As menIoned above, all basic gameplay mechanics are implemented. These include moving
around, looking around, jumping, shooIng enemies, etc.

• Advanced Gameplay (3 Points)
The term “sophis&cated gameplay” leaves much room for interpretaIon; however we have tried
our best to include complex game-logic and gameplay elements. These include buLon
interacIons, fake walls, zombie pathfinding, physics-based wooden crates, etc.

• Min. 60 FPS and Framerate Independence (3 Points)
We tried to opImize our code and third-party assets to keep the game at a stable and high
framerate. On a M1 MacBook Pro running Windows in a Virtual Machine, we normally reach
around 300~400 frames per second.
When the Debug Menu is enabled, the framerate may drop to under 60, because the current on-
screen text rendering is admiLedly not very efficient and is only really used to read off some
currently relevant data for debugging. However, this only applies to debug mode and does not
happen at all during normal gameplay.
All update methods and physics callbacks are implemented using deltaTime as a Ime reference,
which means the game runs completely framerate independent.

• Win/Lose CondiHon (3 Points)
The player can win the game by collecIng all beer boLles and lose the game by being defeated
by a zombie.

• IntuiHve Controls (2 Points)
Regarding our control scheme we looked at other common games of the genre and similar games
and stuck to their controls. Only our debug controls are quite specific, but they are explained in
the debug HUD and should not be needed for normal gameplay anyway.

• IntuiHve Camera (2 Points)
As our game is in first-person, we have implemented a first-person camera which shows the game
from the player character’s point of view. The player can move in all 3 dimension and the camera
follows this movement precisely. For debug purposes, we also implemented a third-person
camera which you can toggle by pressing the C key. However, the third-person camera is not
meant for normal gameplay as the player model itself should not be seen.

• IlluminaHon Model (2 Points)
The game uses the Blinn-Phong shading model for illuminaIon and supports diffuse and specular
textures. All three main types of lights are implemented: DirecIonal Lights, Spotlights and Point

Lights. The shading uses normal vectors, which are either implicitly given or provided by a
separate normal map for some complex geometries and textures.

• Textures (2 Points)
All our used game objects use textures. Mipmapping and trilinear filtering are also enabled.

• Moving Objects (2 Points)
The game uses staIc and dynamic elements. Dynamic elements are controlled either manually by
a script or controlled by the physics engine and can move around the map. The player and
zombies are moved both manually and by physics, other objects like wooden crates can be
shoved around by the players or zombies using the physics engine.

• Adjustable Parameters (1 Point)
While most parameters can be adjusted in-game, most of them have default values stored in an
INI-file. It sets the default values for the screen resoluIon (width/height), Fullscreen mode, the
refresh rate, brightness parameters (exposure and gamma), camera parameters, audio volume,
etc.

Op/onal Gameplay
• Collision DetecHon (4 Points)

The game uses the PhysX physics engine to provide collision detecIon and prevent objects from
walking into or through another.

• Advanced Physics (6 Points)
The game contains dynamic objects which are solely controlled by physics, e.g., wooden crates.
Furthermore, every physics object can have a layer-mask aLached to it, which will determine
when it uses a collision-callback instead of the standard behavior. Using this, the collider will act
like a trigger and custom code can be implemented. This is used e.g., for beer collecIbles and
zombie aLacks.

• Heads-Up Display (4 Points)
The game has two HUDs: one for normal gameplay (health, ammo, etc.) and one for debug
purposes. The gameplay HUD uses pictures, the debug HUD uses text.

Effects
• CPU ParHcle System (8 Points)

The parIcle system works by creaIng a 2D quad/billboard which is used for drawing the parIcle
texture(s). Every frame of the game the posiIon, lifeIme and other values of each parIcle are
updated on the CPU to determine if and where the parIcle should be drawn. These per-parIcle
values are then wriLen into buffers and passed to the GPU where via instancing we can draw one
parIcle per chunk of data we provide in the buffers all within a single draw call.
For this effect we used the suggested tutorial on hLp://www.opengl-tutorial.org/intermediate-
tutorials/billboards-parIcles/parIcles-instancing/

• GPU Vertex Skinning (20 Points)
First the game loads models and animaIons into memory with the assimp-library, traverses
assimp’s data structure and extracts data about the meshes and animaIons and saves this
informaIon in our own data structures. The vertex skinning uses the extracted animaIon to
determine at which point in the animaIon we currently are and interpolates the required
transformaIon matrices via the closest previous and next keyframe transformaIons. The
resulIng list of matrices is then passed to the vertex shader where the required transformaIon
for the current vertex is then extracted from them via the ID associated with the vertex of the
mesh. The transformaIons are then mulIplied with the corresponding weights saved in the
vertex and summed up according to the maximum amount of influence the bones have on each
other. The resulIng final transform is then used to transform the vertex of the model to the
posiIon where it should be in the current animaIon.

For this effect we used the tutorial on hLps://learnopengl.com/Guest-ArIcles/2020/Skeletal-
AnimaIon which, aPer checking the suggested tutorial by “ogldev”, seemed very similar.

• Specular Map (4 Points)
By sampling the object’s specular map, just like a diffuse texture, in the fragment shader via
texture/UV coordinates we can extract a specific color (brightness) value to add to the diffuse
color of the object and add object-specific highlight areas. The specular part of the lighIng
calculaIons is done via the Blinn Phong reflecIon model.
For this effect we used the suggested tutorial on hLps://learnopengl.com/LighIng/LighIng-maps

• Simple Normal Mapping (4 Points)
In our normal mapping implementaIon we create the TBN (tangent, bitangent, normal) matrix in
the vertex shader, which is then used in the fragment shader to transform the sampled normal of
the normal map from its tangent-space into world-space, allowing us to use this transformed
normal in the lighIng calculaIons instead of the per-vertex normals of the object.
For this effect we used the suggested tutorial on hLps://learnopengl.com/Advanced-
LighIng/Normal-Mapping

• Bloom/Glow (8 Points)
We create our bloom effect via mulIple render passes. In the first pass we render the scene into
a texture, while also extracIng points in the scene of high brightness and saving those into a
separate texture. We then blur the image containing the bright spots of the scene in the second
render pass repeatedly, creaIng a glowing effect around those bright spots. In the third render
pass we combine the original texture of the scene with the texture containing the blurred bright
spots into one and render it onto a quad/billboard which is then shown on the screen.
For this effect we used the suggested tutorial on hLps://learnopengl.com/Advanced-
LighIng/Bloom

Third-Party Libraries
• Assimp – Model Loading

o Used for loading complex 3D models and geometries
o hLp://assimp.org/

• FreeType – Loading fonts as bitmaps
o Used for on-screen text (debug HUD, pause menu, etc.)
o hLps://freetype.org/index.html#

• Stb – Image file loading
o Loads image files (textures, HUD elements, etc.)
o hLps://github.com/nothings/stb

• NVIDIA PhysX 4.1 – Physics engine
o Used for physics-based interacIons of game elements
o hLps://github.com/NVIDIAGameWorks/PhysX

• irrKlang – Sound library
o Plays sounds in-game
o hLps://www.ambiera.com/irrklang/

