
Documentation Submission 2 - Polychromacy

The Game
In our Game “Polychromacy” the Player starts in a cave like- room and needs to fulfill certain
tasks to enter the next level and ultimately win the game. A level is completed, when the
player manages to adjust the color of the lamps of the room so that it is equal to the crystal
object in the center. To achieve that, there are 3 levers, each one representing a primary
color that can be changed in intensity. In our case - looking into the room from the default
starting position - the left lever represents RED, the one at the back represents GREEN and
the right one BLUE, also shown by some light objects positioned right above the levers.
Overall the player has 5 lives to solve the 5 levels with 10 possible actions each. One action
is one adjustment of a handle. It is possible to get tipps to solve the level, though one tipp
costs the player one life.

Description
Besides having created a Win- Lose- Condition we also added two more levels and made
the setup for each level increasingly harder. To implement an advanced gameplay, the player
has to move around in a more complex room, move objects or avoid getting hit and do
certain tasks first to be able to reach some of the handles. All our models (besides the cube
and the sphere) are modelled by hand in Blender and loaded to the game using obj- Objects
and the Assimp Importer. Each object has an assigned material, varying from stone to gold
(wall and lamps), done by physically based shading, light for the lightobjects and the
included materials of the loaded objects. The illumination of the room is done mainly by an
invisible pointlight at the center of the room, which illuminates all objects, as well as the
several smaller and less impactful point lights at the walls.
For an intuitive movement we used the regular WASD and arrow keyboard input, looking
around the room is done by mouse- movement. Furthermore the adjustable parameters can
be changed by the assigned keys to which we provide a full list in the step-by-step game
instruction at the end of this document.

Features
Removable objects
In some levels, certain tasks have to be done to be able to reach some of the handles.
Therefore we have implemented removable objects. In level 2 is an obstacle, blocking the
way to the green lever. It can be dissolved by setting the color adjustments first to the
obstacle color and will come back if the handles are switched back again. In level 5 is a
transparent bridge underneath the blue lever that can be made solid with the correct light
settings. The removable objects are implemented using physX, where we add or remove
obstacle-geometry to the player’s scene.

Collision Detection and Advanced Physics
Sometimes the player needs to jump onto platforms in order to access some of the handles.
The jumping, movement and collision detection is implemented using physX. The Camera
position is tied to the position of a character controller. The room and its details are all rigid
static actors in the scene assigned with hitboxes. Jumping was implemented by moving the
player up for a certain amount of time. Every frame the player isn’t jumping up, gravity
moves the player down. If the position of the player doesn’t change, the player is flagged as
grounded. Only when the player is grounded can they jump.

There are two kinds of moving objects. One is a dynamic light block that appears in every
level and can be moved around and jumped on. Another moving object is a rolling ball that
limits the player's movement in the later levels and is able to push the player away. The
moving obstacle is implemented as a rigid dynamic body with a kinematic flag, it moves
between two points and changes direction when it reaches one of the endpoints. The
dynamic light block makes use of a collision callback via the player controller, where when
the block is touched a force is applied to it in the direction of the hit. Furthermore we have
introduced some pressure plates in level 4 and 5, which react to the player jumping on them.

Heads-up-display
The HUD uses the freetype library to easily read in .ftt fonts and save them as textures. We
save the id of the texture, the size, the bearing (position relative to origin) and the advance
(the distance between the origin and the origin of the next character). Using these values
and a given x and y coordinate we calculate the positions of the quad we will render the text
in. We repeat this calculation for every new character, adding in the advance to the x
position after every character. The HUD can be turned off by pressing h.

Effects
Vertex Shader Animation
We use vertex shader animation as a special feature in level 5 to simulate the floor covered
with water. To do that, we generate a plane geometry according to the room size with
adjustable granularity of the mesh. The position’s y- value and normals are getting
recalculated every frame with a sinus function. To give the water surface a more natural and
random look we use Fractal Brownian Motion. In the end the surface is illuminated with the
centered pointlight to make the ripple effect starting from the crystal visible.

Specular Map
For the handles we use a specular map to make to golden surface look shinier. Therefore we
have exported a regular diffuse map as well as a specular map from Blender. A specular
map is only black and white and is used to define the specular parts in an object. The
specular map is set as a uniform in the fragment shader and multiplied with the diffuse
texture in the color- calculation. This results in brighter spots being highlighted.

PBR

We implemented physically based rendering using different textures for the albedo,
roughness, metallic and ambient occlusion. First we use the vertex uv coordinates to get the
specific positions in the textures. We also get the normal of the vertex from the
corresponding point on the normal map. We calculate the base reflectivity and use it in the
FresnelSchlick Approximation to calculate the ratio of light reflected over light refracted. We
calculate this ratio for each light. We also calculate distance, attenuation and radiance of
each light. To get the final color, we use the Cook-Torrance Reflection Equation, we use the
normal distribution function to approximate the amount of microfacets aligned to the halfway
vector and the geometry function to approximate the surface area where micro
surface-details overshadow each other. The results of the Cook-Torrance Reflection
Equation are added up for each individual light.

Bloom & HDR Framebuffer
The Bloom effect was achieved by rendering the scene to two color buffers, one for the
actual scene and one for the bright areas to be affected by bloom. The two color buffers are
saved in separate textures. In another framebuffer, the brightness texture is blended using a
gauss filter. Lastly, the blurred brightness texture and the scene texture are combined and
rendered as a texture in the default framebuffer. The used framebuffers all are high dynamic
range framebuffers so that lights can be much brighter than (1,1,1).

Normal Mapping
The normal is retrieved from a texture and transformed to the range of [-1,1]. Then we
calculate the Tangent, Bitangent and Normal Vector for our TBN coordinate system - the
Normal is the normal vector stored in the vertex, the Tangent is calculated using the
differences in the partial derivatives of uv coordinates and partial derivatives of world
coordinates and the Bitangent is calculated as the negative cross product of the other two
Vectors. We store them as a 3x3 Matrix and multiply that matrix with the normal vector we
received from the texture, then normalize the new vector.

Shadow Mapping
We decided that it would be best if the Shadows only come from the central room light
illuminating our scene. Since this light is a point light, we use a cubemap to save the
shadows. This cubemap only saves the depths from the viewpoint of the light. Firstly, we
define the 6 view matrices, one for every side of the cubemap and multiply them with a
perspective projection matrix - we use a perspective matrix instead of an orthogonal one
since we are trying to calculate the depths from the viewpoint of the lightsource. For each of
the sides of the cubemap, we use the corresponding view-projection matrix to draw every
element in the scene. In the Shader, we save the distance between fragment-positions and
the light-source in the depthMap. After six passes of this, one for each side of the cube, we
then draw the scene as normal, but with the added cubemap in the fragment shaders. The
shadow value is calculated in the Function “ShadowCalculation”. Here, we first get the
direction vector from the light source to the fragment position. Using this vector, we get the
corresponding position in the depthMap. To combat the problem of the edges of the
Shadows being pixelated, we use a set of Vectors to sample from different positions of the
depth Map around the Position that the Fragment actually has. We multiply those Vectors
with a value calculated using the position of our player - this makes it so that shadows are
sharper when close by and softer when further away. We then take the average of the
shadows at the sampled positions as our actual shadow value. For the issue of Shadow

Acne we use a bias to offset the depth at the current spot - since our values are all in a big
range (0-100) we use a rather big bias.

Additional libraries and code references
Simple Shader without lighting for model and classes for model loading (mesh and model
class)
https://learnopengl.com/code_viewer_gh.php?code=src/3.model_loading/1.model_loading/1.model_lo
ading.vs
https://learnopengl.com/code_viewer_gh.php?code=src/3.model_loading/1.model_loading/1.model_lo
ading.fs
https://learnopengl.com/code_viewer_gh.php?code=includes/learnopengl/model.h
https://learnopengl.com/code_viewer_gh.php?code=includes/learnopengl/mesh.h
Assimp for model loader - https://www.assimp.org/index.php/downloads
stb_image
physX - https://github.com/NVIDIAGameWorks/PhysX
freetype - https://www.freetype.org/
Text Rendering: - https://learnopengl.com/In-Practice/Text-Rendering
https://learnopengl.com/code_viewer_gh.php?code=src/7.in_practice/2.text_rendering/text_rendering.
cpp
Specular Map
https://learnopengl.com/Lighting/Lighting-maps
Bloom
https://learnopengl.com/Advanced-Lighting/Bloom
https://learnopengl.com/code_viewer_gh.php?code=src/5.advanced_lighting/7.bloom/bloom.cpp
Physically Based Rendering:
https://learnopengl.com/PBR/Theory
https://learnopengl.com/PBR/Lighting
https://learnopengl.com/code_viewer_gh.php?code=src/6.pbr/1.2.lighting_textured/lighting_textured.c
pp
Vertex Shader Animation
https://subscription.packtpub.com/book/game_development/9781849695046/1/ch01lvl1sec12/doing-a
-ripple-mesh-deformer-using-the-vertex-shader
Fractal Brownian Motion for Water: https://thebookofshaders.com/13/
Crystal Texture - https://www.123freevectors.com/grey-crystal-background-image-125862/
Blender Rock Brushes
https://blendswap.com/blend/20195
Shadow Mapping:
https://learnopengl.com/Advanced-Lighting/Shadows/Shadow-Mapping
https://learnopengl.com/Advanced-Lighting/Shadows/Point-Shadows
https://learnopengl.com/code_viewer_gh.php?code=src/5.advanced_lighting/3.2.2.point_shadows_sof
t/point_shadows_soft.cpp
https://users.cg.tuwien.ac.at/husky/RTR/OmnidirShadows-whyCaps.pdf
Video Sound
https://www.bensound.com/royalty-free-music/track/deep-blue

https://learnopengl.com/code_viewer_gh.php?code=src/3.model_loading/1.model_loading/1.model_loading.vs
https://learnopengl.com/code_viewer_gh.php?code=src/3.model_loading/1.model_loading/1.model_loading.vs
https://learnopengl.com/code_viewer_gh.php?code=src/3.model_loading/1.model_loading/1.model_loading.fs
https://learnopengl.com/code_viewer_gh.php?code=src/3.model_loading/1.model_loading/1.model_loading.fs
https://learnopengl.com/code_viewer_gh.php?code=includes/learnopengl/model.h
https://learnopengl.com/code_viewer_gh.php?code=includes/learnopengl/mesh.h
https://www.assimp.org/index.php/downloads
https://learnopengl.com/In-Practice/Text-Rendering
https://learnopengl.com/code_viewer_gh.php?code=src/7.in_practice/2.text_rendering/text_rendering.cpp
https://learnopengl.com/code_viewer_gh.php?code=src/7.in_practice/2.text_rendering/text_rendering.cpp
https://learnopengl.com/Lighting/Lighting-maps
https://learnopengl.com/Advanced-Lighting/Bloom
https://learnopengl.com/code_viewer_gh.php?code=src/6.pbr/1.2.lighting_textured/lighting_textured.cpp
https://learnopengl.com/code_viewer_gh.php?code=src/6.pbr/1.2.lighting_textured/lighting_textured.cpp
https://subscription.packtpub.com/book/game_development/9781849695046/1/ch01lvl1sec12/doing-a-ripple-mesh-deformer-using-the-vertex-shader
https://subscription.packtpub.com/book/game_development/9781849695046/1/ch01lvl1sec12/doing-a-ripple-mesh-deformer-using-the-vertex-shader
https://thebookofshaders.com/13/
https://www.123freevectors.com/grey-crystal-background-image-125862/
https://blendswap.com/blend/20195
https://learnopengl.com/Advanced-Lighting/Shadows/Shadow-Mapping
https://learnopengl.com/Advanced-Lighting/Shadows/Point-Shadows
https://learnopengl.com/code_viewer_gh.php?code=src/5.advanced_lighting/3.2.2.point_shadows_soft/point_shadows_soft.cpp
https://learnopengl.com/code_viewer_gh.php?code=src/5.advanced_lighting/3.2.2.point_shadows_soft/point_shadows_soft.cpp
https://users.cg.tuwien.ac.at/husky/RTR/OmnidirShadows-whyCaps.pdf
https://www.bensound.com/royalty-free-music/track/deep-blue

Instructions to Solve the Game
Level 1

- press ENTER to start game
- go to red handle (left wall) and press 3

Level 2
- go to blue handle (right wall) first and press 3 → removes obstacle
- go to green handle (back wall) and press 3

Level 3
- push light cube to plattform to jump on it
- go to green handle (back wall), jump on platform and press 3
- push light cube to right wall, jump on it to reach blue handle and press 2

Level 4
- move up on elevated bridge (use light cube to support jump on first step of stairs)
- go to red handle (left wall) and press 2
- go to green handle (back wall) and press 2

Level 5
- avoid falling down into water (watch for rolling ball)
- go to red handle first (left wall) and press 3 (makes platform at the right side solid)
- go to blue handle (right wall, jump around the column on the front wall to reach it or

jump on golden plate at the left wall to get a temporary help crossing that corner) and
press 3

- make use of the pressure plates again to go back
- go to green handle (back wall) and press 2
- go to red handle (left wall) and press 1

Keyboard-input/Adjustable Parameters

- move around : WASD or arrow keys
- jump : SPACE
- adjust handle: 1,2,3
- pause / unpause : p
- show HUD / hide HUD : h
- show settings: press p for pause, then c to toggle to settings
- tipp: t
- leave tipp: ENTER
- brightness : brighter = , darker = .
- full screen on / off = F11
- framerate : f
- refresh rate : 8, 9
- toggle shadows on/off: o
- exit game : ESC

