
 

Documentation - Monstar 
 
 
 

 

 
1. Brief description 

In Monstar the player tries to save little black monsters with bringing a shooting star back 

home. To do so, you have to push the fallen star through a maze, the goal is on the other 

end of the field. 

 

2. Features 
 
 

User Interaction WASD + Mouse: Player can move monster 
ESC: Quits Game 
F1: Toggle wire-frame mode (implemented, at the 
moment, overdrawn by bloom implementation) 
F2: Toggle back-face culling (same as F1) 
F3: Toggle to Free-FPS Camera-Mode for 
Debugging/Inspecting the Scene 
[WASD + Mouse: to move the camera, Space and L-Shift 
for Up and Down Movements] 
F4: change to Idle Animation (is not shown correctly) 
F5: change to Running Animation (is not shown correctly) 

3D Objects Static: 
- 3 Walls 
- Goal (has a wall shape and reflects the skybox) 
- Ramp/bridge 

Dynamic 
- Player (black monster, animated, WASD 

interaction) 
- Shooting star (movable by player) 
- 2 Stone Enemies (You can knock them over) 

Lightning The scene is illuminated by the shooting star object. 
(Point Light) 

Camera The Camera follows the player, but can be moved with the 
mouse (as the feedback suggested). For debugging 
purposes, you can toggle to an FPS camera 

Win/Loose Condition Player wins if shooting star touches goal. The window 
closes and the console prints out a message. If the 
shooting star touches an enemy, the same happens. 

Adjustable Parameter Screen Resulution, Fullscreen-Mode, RefreshRate and 
brightness are read from a settings.ini file 



Collision Detection - Basic 
Physics 

The shooting star and the player are controlled by a 
physics engine (PhysX). Implemented in PhysXScenery.h 
and CustomPhysXCallbackHandler.h (plus corresponding 
.cpp files). It detects all collisions between them and other 
objects of the game and handles them correctly. 

Advanced Physics The shooting star moves correlating to the players' 
velocity when hit by the monster. Also player and shooting 
star are bouncing back from walls, etc. 
(Note: PhysX does something crazy on our AMD 
hardware, where it starts really fast, even though we set 
the max velocity, and after some time it slows down real 
slow) 

 

 

3. Additional Libraries 
 
 

GLEW, GLFW For basic window and OpenGL functionalities. 
URL: http://glew.sourceforge.net/install.html (glew), 
https://www.glfw.org/ (glfw) 

PhsX Collision Handling and adding “real” physics effects like gravity 
URL: https://developer.nvidia.com/physx-sdk 

assimp Loading and handling animations 
URL https://www.assimp.org/index.php/downloads 

 

 

4. Effects 
 
 

Post-Processing: 
Bloom/Glow 

The shooting star is glowing. Implemented 
in three shaders and the use- and initbloom 
function. Draws from framebuffer and uses 
Gauss filter and mipmap in last shader to 
make edges of bright objects blurry. 

Animation 
GPU Vertex Skinning 

(Note: we really(!) tried to make this effect 
work, but we couldn’t get it to display the 
animation correctly. However, the 
player-character has animated legs, the 
rotation and translation get interpolated and 
the matrices for the jointTransforms are 
being weighted in the shader, but we 
couldn’t get the formula right for the 
matrices given to the shader via the 
jointTransform Uniform). 
The player has moving legs. Implemented 
in an extra class structure using assimp. 
The model was animated using blender. 

http://glew.sourceforge.net/install.html
https://www.glfw.org/
https://developer.nvidia.com/physx-sdk
https://www.assimp.org/index.php/downloads


 The bone-skeleton, its weights and each 
Keyframe animation is imported. 
While rendering the model, the 
transformations according to the bones and 
its weights get interpolated between the 
timepoints of the keyframes. 

Environment Map We implemented a cubemap/skybox and 
created a new shader, which draws the 
reflections of the skybox on the surface 
according to the viewers (the cameras) 
angle. Only the goal has this shading. 
(Honestly, we implemented this, because 
we needed points, it doesn’t fit the 
gameplay, but the skybox looks pretty). 

Super Simple-Cell-Shading Since we have a lot of flat Surfaces, it isn’t 
visible too good, but we do have altered our 
phong-shading of most objects in the scene 
(the ground plane, the walls and the bridge), 
such that the ambient and diffuse factors 
are being drawn in levels (instead of a 
steady gradient). This gives simple a 
cell-shading look. 

 

 

5. Step-by-step Guide 

As already mentioned, the game is played by pushing the glowing shooting star to the other 

side of the maze. To facilitate things for test purposes, here a few important tips. First, the 

goal is straight ahead on the other side of the map. Sometimes moving the shooting star can 

a bit tricky. But if you make your first push just hard enough, you can shoot the ball over the 

obstacle right in front of you. This would be the easiest solution, otherwise you have to make 

controlled movements to not push your star. And last, the map is surrounded by an invisible 

wall, just in case you don’t notice it while playing. 

You won if the shooting star touches the goal, which is the reflecting surface on the end of 

the map. Then the window automatically closes. If you pushed the star into an enemy (big 

stone guys), you lost and as before, the window closes. The output of the console shows a 

message according to your victory or defeat. 

 
 

 
6. Additional Notes 

6.1 Code used 

function to convert assimp Mat4 to glm::mat4: 

https://stackoverflow.com/questions/29184311/how-to-rotate-a-skinned-models-bones-in-c-u 

sing-assimp 


