
George Schenzel, Victor Mittermair 10.6.2021

Submission 2 - CoD Covid Mode
Description of Implementation
The core architecture of the game is an “entity component system” to handle game logic and
data. We have entities that can have multiple different components, which hold data. Then
we have systems that iterate over all entities that match certain criteria and perform some
action. For example, the RenderSystem fetches all entities containing a “Transform” and
“Renderable” component and uses the data stored in those components to render those
entities.

This allows us to create very flexible and decoupled code for different aspects of the game.
For the implementation of the entity component system we use the library “entt” [1] which
provides us the tools to create, manage and retrieve entities with our custom components.

Features
In Cough of Duty - Covid Mode you spawn in a beautiful world. But there is a twist. Suddenly
you get approached by covidiots from four different directions. You have two options to
defend yourself: 1. Shoot with the crossbow (left click) 2. Throw the holy grenade aka the
orange book (middle mouse button). You start with 100 health points and if you have 0 left
you die and you have to restart the game by pressing “Enter”.
There are multiple random items that spawn after each wave:

● Shield (automatically equips itself for 30s) which gives you better damage
resistance against the covidiots

● The orange book (gives you one more ammo for the holy grenade).
● A Pfeiser vaccine (blue) which increases the damage you do
● An Austro Zeneca vaccine (orange) which increases your fire rate
● A Leberkassemmel, which heals you to 100 health
● A mask which blocks all damage for a short duration

Each wave the covidiot count increases thus clearing waves becomes increasingly harder.
The goal is to survive the longest you can.

Gameplay

Compulsory

3D Geometry
Geometry is created with blender and loaded in using assimp loader.



George Schenzel, Victor Mittermair 10.6.2021

Min. 60 FPS and Framerate Independence
Our game runs framerate independent. This is done by multiplying everything that should
happen at a fixed rate by deltaTime. The game runs at a minimum of 60 FPS as well.

Win/Lose Condition
You lose if your hp is <= 0 and because this is a never ending game the win condition is to
survive the longest you can.

Intuitive Controls
Basic Movement - WASD
Look around - Mouse
Jump - Space
Shoot - Left click
Throw Orange Book - Hold and release middle mouse button
F1 - Toggle Wireframe Mode
F2 - Toggle Backface Culling
F3 - Show FPS
F4 - Toggle HUD
F5 - Toggle Spectator Mode (for debugging, unlimited Orange Books)
F6 - Toggle Normal Mapping

Intuitive Camera
We have a first person camera that is rotated by using mouse movement. We used the
camera tutorial on learnopengl.com [4].

Illumination Model
We use the phong illumination model and have the sun as a single global directional light
source. We store information about how an entity should be rendered in a material class,
which sets properties like the color in the shader.

Textures
Diffuse Textures and normal maps are loaded from png files. Each model can have different
Textures, which get resolved when importing an .fbx.

Moving Objects
The enemies are always moving towards the player. Items that spawn spin around the y-axis
to signal that they are collectable. If you shoot or throw a grenade new physics entities will
be instantiated.



George Schenzel, Victor Mittermair 10.6.2021

Documentation
Most functions and classes have docstrings and difficult code lines are explained as
comments.

Adjustable Parameters
The screen width and height, target framerate and fullscreen toggle can be controlled using
a config file (settings.ini in Resources/).

Optional

Collision detection
As a physics engine we use Bullet Physics [2]. Each entity that should be affected by
physics gets a RigidBody component. Our PhysicsSystem then creates a rigidbody in the
bullet world for each RigidBody component. Each frame all entities with a RigidBody get their
transforms updated from their equivalent rigidbody in the bullet physics world.

The player and enemies are moved using the physics engine so they can collide with the
environment and are affected by gravity.

Advanced Physics
The player shoots projectiles that collide with the world and apply damage on collision with
enemies. We also have a grenade that on explosion applies damage and knockback force to
all enemies in range.

Enemies that die will still be present for a few seconds, so they will fly away when hit by an
explosion or player projectiles.

HUD
We use the freetype library [3] to load bitmaps from font files to display the HUD. We used
the tutorial on learnopengl.com [4].
The HUD shows all necessary gameplay information such as health, ammo, powerups and
wave number, Orange Book ammo.

Effects

Environment map
We implemented a cubemap which can function as a skybox and use environment mapping
for reflection and refraction. We used the learnopengl tutorial [4]. These reflections are
visible on the crossbow.



George Schenzel, Victor Mittermair 10.6.2021

Normal mapping
We implemented tangent space normal mapping with imported normals, tangents and
bitangent from assimp loader. We used the tutorial on learnopengl [4].

Vertex skinning
We implemented vertex skinning by loading skeletal animation of a .fbx file and calculating
bone transform matrices each frame. Together with a per vertex bone weight we calculate
the final transformation in the vertex shader. We used the tutorial on ogldev [5]. Enemies,
crossbow, book is animated.

References
[1] https://github.com/skypjack/entt
[2] https://github.com/bulletphysics/bullet3
[3] https://www.freetype.org/
[4] https://learnopengl.com/
[5] https://ogldev.org/

Credits
Crossbow Model:
"Crossbow"
by Fanton
https://sketchfab.com/3d-models/crossbow-6d2dc55ac3344c1a844b44a52ee6c4d4
CC BY 4.0

Music:
Battle Metal by Alexander Nakarada | https://www.serpentsoundstudios.com
Music promoted by https://www.chosic.com/
Attribution 4.0 International (CC BY 4.0)

Image Karlskirche:
"Die Karlskirche in Wien im Abendlicht"
by Thomas Ledl
https://de.wikipedia.org/wiki/Wiener_Karlskirche#/media/Datei:Karlskirche_Abendsonne_1.jp
g
CC BY-SA 4.0

Skybox:
Miramar skybox
by Jockum Skoglund (hipshot)
https://opengameart.org/content/miramar-skybox
CC BY 4.0

https://github.com/skypjack/entt
https://github.com/bulletphysics/bullet3
https://www.freetype.org/
https://learnopengl.com/In-Practice/Text-Rendering
https://ogldev.org/www/tutorial38/tutorial38.html

