Status

In Ubec currently all five games/puzzles are implemented. The only difference with the
concept is a slight change of the gamelogic in some parts (no crashing object, eg.).Where
the effects can be found is described in the following section.

Controls

World movement

e hold and drag right-mouse-button for orientation
e use scroll wheel for zoom
e F1: controls; F5: wireframe mode; F6: backface culling; F7: show “debug” game-info

Game interaction

BallGame — use arrow keys to set the ball in motion (view-depending)

MovingTiles — left-click on a tile, to swap it with the blank space

RiverCrossing — left click on: Entity to move onto the boat, Boat to move Entity back on
bank, River left/right to the boat to move the boat to the opposite bank.

RedButton (CubeBottom) — left click to push button.

FlowPuzzle — left click on field- color changes with the amount of clicks

Playthrough

BallGame — Goal of this puzzle is to find the right hole for the ball. Look at the game from the
bird’s-eye-view. Your target hole is on the bottom right of the surface, diagonal from your
starting position. Skillfully try to roll in the ball and solve the puzzle.

MovingTiles — Rotate the four tiles in the top left clockwise to complete the picture (last pile
appears in top-left position, when other tiles are correct)

RiverCrossing — One possible solution [1]

- put deer on the boat and transfer to other bank, go back empty

- put broccoli onto boat, transfer and load the deer for the back travel
- unload deer and put dog, transfer, go back empty

- put deer onto boat and transfer, puzzle should be solved

FlowPuzzle- Connect all color origins with the according color:




Press the same field multiple times to change the color and connect all the paths.

RedButton - Press the button when all other games are solved to stop the time and finish the
game.

Gameplay

3D Geometry (6 Points)

Models (inkl. bones and animations) can be imported via assimp library. Shown in e.g.
RiverCrossingGame.

Playable (3 Points)

Shown in all games.

Advanced Gameplay (3 Points)

BallGame - You can roll a ball through a labyrinth, which consists of platforms, walls, ramps
and holes. The goal is to find the right hole, drop the ball and win the game. If you choose
the wrong opening or the ball drops off the edge of the cube, the game will reset and you get
a new try.

Min. 60 FPS and Framerate Independence (3 Points)

FPS currently not a problem- besides that instanced rendering is used, to ensure min FPS in
the future. Furthermore the physics will be sampled and updated at 60 FPS to ensure the
same speed and sensitivity on all machines.

Fl shown in BallGame, paricleSystems and animation

Win/Lose Condition (3 Points)

The game is won, when all puzzles are solved.
Lose, when the time is up.
In either case the scene is changed to a simple message.

Intuitive Controls (2 Points)

BallGame - If one of the arrow-keys is pressed once, the Ball will roll in the matching
direction (view-depending). It will not continuously roll, instead it slowly stops after a while
and you will need to push again.

Everything else is controlled by the mouse- interaction with left and rotation with right click



Intuitive Camera (2 Points)

Movement is fixed around the cube, which is the center of attention. Scrolling is possible.
Other movements don’t really make sense in our game.

lllumination Model (2 Points)
One directional light is used (best seen on BallGame with shadows)

Parameters can be set at object creation, normals either imported or generated.

Textures (2 Points)

Are used throughout the whole game.

Moving Obijects (2 Points)

BallGame - the ball can be set in motion by pressing the arrow-keys.

MovingTiles- the tiles can be set in motion by left clicking a moveabile tile.

Collision Detection (Basic Physics) (4 Points)
Using PhysX Library.

BallGame - Physics are used to create a dynamic Ball and a static Labyrinth. The ball can be
set in motion via adding Force and wont go through walls.

MovingTiles/RiverCrossingGame- Physics are used to interact with the game. Static objects
represent hitboxes for an interaction ray (sent from the camera's position into the view
direction). When such a ray intersects with a hitbox, an action is set.

Heads-Up Display (4 Points)

So far the text is rendered as a rectangle with glyph textures (and transparent background).
View and projection are “ignored” to “stick” the rectangles onto the screen.

Currently shown all the time (FPS and timer in corners of the screen), toggleable with F7.
Currently “text” is rendered, using FreeType-Library. Image/Controls are shown when
pressing F1.



Effekte
Lighting

Shadow Map with PCF (16 Points)

A ShadowMap is rendered from the lights perspective (only a depth map is generated),
which is the base of the following shadow calculation. The shadow map is rendered with a
FBO. Artefacts like shadow acne and peter panning are avoided by using backface culling-
this is possible because we only use objects with thickness in our scene. Jaggy edges are
avoided with PCF on the hardware and combining 16 different, poisson sampled, points in
the transition area. For performance reasons, only four are used in homogenous areas (baily
early). Can be seen in BallGame.

Advanced Modelling

Particle System

Particles in our case are points, where a certain texture is stitched to it. The normal vector of
these planes always faces to the user. New particles are generated, when old die and the
color, size and position change over the adaptive lifetime. Well shown in FlowGame.

Animation

GPU Vertex Skinning (20 Points)

Modes are imported with bones and animation. The vertices are transformed and
interpolated according to the weight of the bones and keyframes. The weight and the
matching Bone is than passed to the modelLoadingShader. Shown in RiverCrossingGame
by clicking one of the animals.

Texturing

Environment Map (8 Points)

A cubemap is used as a source of reflection for the environment mapped object. The
reflection combined with the material properties of the object, give the look of the object.
Shown on the base cube/frame. Additionally a skybox was used to give the game a specific
mood.

Cel Shading (4 Points)

The surface brightness gets divided into levels. Each color will be set to the lower limit on
their level. The results are discrete color layers. Shown in RiverCrossingGame and
CubeBotton (Button on bottom of cube).



Post Processing

Contours via Backfaces (4 Points)

Contours via EdgeDetection was switched to Backface, due to unwanted functionality of
EdgeDetection.

Backfaces are drawn slightly larger in a contour texture before front faces are drawn.
Currently used on the Ball from BallGame to slightly separate movable objects from the
static environment. Shown in RiverCrossingGame (Clickable Models) and BallGame
(movable Ball).

Libraries und Code Sources

“The Open-Asset-Importer-Lib” for model import (https://www.assimp.org/)

“The FreeType Project” for rendering 2D-text (https://www.freetype.org/)

“‘NVIDIA PhysX SDK 4.1” to add physics (https://github.com/NVIDIAGameWorks/PhysX)

Slightly modified source code for mouse picking
(https://github.com/andersonfreitas/opengl-tutorial-org/tree/master/misc05_picking)

Print text on screen (https://learnopengl.com/In-Practice/Text-Rendering)

[1] https://de.wikipedia.org/wiki/Fluss%C3%BCberquerungsr%C3%Ad4tsel



https://www.assimp.org/
https://www.freetype.org/
https://github.com/NVIDIAGameWorks/PhysX
https://github.com/andersonfreitas/opengl-tutorial-org/tree/master/misc05_picking
https://learnopengl.com/In-Practice/Text-Rendering
https://de.wikipedia.org/wiki/Fluss%C3%BCberquerungsr%C3%A4tsel

