

Submission 2

Jana Sokol (09971444)

Christoph Winkler (11701292)

Documentation:

Implemented Compulsory Gameplay:

● 3D Geometry (6 Points): Our game contains non-trivial 3D-Objects (Wall around the

door, pressure plate, RePeter). All used objects were created using Blender and are

being loaded into our project via the ASSIMP library. The file format of our choice is

wavefront (.obj). The objects are being loaded using our LoadModel()function and

are being rendered using the RenderModel()function.

● Playable (3 Points): Our game is playable. In contrast to our first submission, we now

have our three planned levels implemented. Even though the cloning mechanics are

still acting up a little bit sometimes, there is now a game mechanic in place to deal

with such issues, so that it is now possible to play the whole game through, without

having to restart the game.

● Advanced Gameplay (3 Points): As per the requirements, we added sophisticated

gameplay. As mentioned above, the cloning mechanics, especially the handling of

the RePeter has been updated. Also with the implementation of the additional levels,

each level has now specific unique features (Lava, lights out).

● Min. 60 FPS and Framerate Independence (3 Points): There is now a

glfwWindowHint(GLFW_REFRESH_RATE) in place, which specifies the minimum number of

FPS. The variable can be set in the settings.ini file in the assets folder. Our testing

has shown us a standard framerate of about 200+ FPS. The object movement is

dependent upon a delta time variable.

● Win/Lose Condition (3 Points): As they say, winning is easy, losing is hard. Winning

in each level means to open the door and pass onto the next level. Losing however,

is intentionally level dependent. As the first level serves as a tutorial/introduction

which is why we decided to leave losing here as “not being able to pass on”. The

second level makes use of the more classic interpretation of losing, which is dying. In

our case either by falling into the Lava or running into the Laser. The last level, as it

is the lights out level, is hard enough as is, so the player plays against themselves

using the timer as a win/lose condition.

● Controls (2 Points): The game is being played using the standard WASD-SPACE

key configuration to move and jump, the mouse is used to control the camera and

our cloning mechanism can be triggered using the key “C”. Furthermore, as stated

earlier, the “R” key has been implemented to reset the clones or start the level

again after dying. It is also very useful to regain control over a rough clone if it

should decide to act up. Last but not least you can use the “P” key to push boxes

around the scene.

● Intuitive Camera (2 Points): The game uses a camera model to generate the correct

transformation matrices. It can be controlled by using the mouse.

● Illumination Model (2 Points): There are point lights, spotlights and a directional Light

implemented in the game, although spotlights have not made it onto the stage. As of

now, the game supports two types of materials (shiny and dull). The textures are

being displayed using the normal vectors which come with the models themselves.

● Textures (2 Points): All of our objects are textured. All but one (plain, default) textures

come with the objects themselves.

● Moving Objects (2 Points): To complete a level, the player has to open the doors to

the next room. The opening of the doors is done by moving the doors. The mechanic

which opens the door, the RePeter, are also moving objects.

● Adjustable Parameters (1 Points): Screen settings (screen size, fullscreen, refresh

rate etc.) are being read from an .ini file via the Inireader. Using this, these screen

settings can be changed without recompiling the game.

Implemented Optional Gameplay:

● Collision Detection (4 Points): As our physics engine of choice, we’re using PhysX.

Every Object in our scene has a rigid body attached to it, including the player, which

allows for game mechanics like gravity, collision detection, etc.

● Advanced Physics (6 Points): One of the core elements of our game is the pressure

plate. In game they are used to open doors, control lasers and win the game. The

pressure plates, as well as the Lava and the Laser are PhysX Trigger Objects,

which set a callback whenever they are triggered to inform the game of what has

happened. The Player Character itself is controlled not just by the player, but also

by a PhysX Character Controller. This helps mostly with the interaction with other

RePeter. Furthermore we simulated physics with pure dynamic objects (making no

use of kinematic functions/bodies), which can be seen in Level two, where the

stepping plate makes use of gravity and you are able to push a box using linear

velocity.

● Heads-Up Display (4 Points): Our game makes use of HUD’s in two forms. The first

one comes in form of the timer, which can be found at the right upper corner of the

screen. The second one can be seen at the beginning of the first level as the

tutorial. Here are again, two are implementations at play, the first one being in form

of text on screen (Press T for tutorial) and the second one as 2D-billboards hovering

over the pressure plates (Stand here to activate).

Features:

The feature that makes up the whole concept behind the game is the cloning mechanic. It
should be noted that the kind of cloning we chose to go for, was temporal cloning – meaning
that each time the player decides to clone, it resets time. The current implementation of the
cloning mechanic works on the premise of the observing and recording mode. The player
starts out in the observing mode, where it can navigate the world freely without effecting the
first clone. Pressing the “C” key will switch the player from observing to recording mode. In
recording mode, the player starts out at the start point of the clone’s path and any further
movement is being tracked as a path for the clone to follow. The clone mechanic is depended
upon the timer in the upper right corner of the screen, as each cloning call will reset time,
meaning set it back to zero. This is important when considering the clone’s lifetime as a clone
will stay alive if the player keeps staying in recording mode. At the time when the player
decides to press “C” again, the player is being switched back into observing mode and the
clone starts to follow the path, the player has tracked. Pressing “C” again will start the
recording for the second clone. If the player starts recording the second alone while the first
clone is still alive, the player will be able to see and interact with clone. Up to 4 clones can be
created this way. Should the player die along the way, it will be asked to press the “R” key to
reset the current level. This will also delete all current clones and their paths. The function can
also be called while the player is still alive, to help with deleting clones who seem to follow a
path incorrectly. This way, the whole game can be mastered.

Additional libraries:

● ASSIMP (https://www.assimp.org/) - for object loading

● FREETYPE (https://www.freetype.org/index.html) – for text on screen

● GLEW (http://glew.sourceforge.net/) - extension wrangler

● GLFW (https://www.glfw.org/) - for window creation

● GLM (https://glm.g-truc.net/0.9.9/index.html) - for mathematical calculations

(vectors, world transformations via matrices, etc.)

● PHYSX (https://developer.nvidia.com/physx-sdk) - for in game physics (collision

detection, usage of trigger, character controlling etc.)

Implemented Effects:

● Lighting: Shadow Map with PCF (16 Points): In the game shadows are being

displayed using shadow maps. For example shadow acne is being handled by using

a bias and shadow edges are being smoothed out by using pcf (see shader.frag

CalcDirectionalShadowFactor()).

● CPU Particle System (8 Points): The main resource for the implementation was

the opengl-tutorial.org: Particles/Instancing. The partlice system can be found

in the class particles and is implemented in a way, that provides the ability to

create multiple different particle systems with varying textures, sizes, positions,

speed and lifetime. The most important components of the system are the

methods Init(), FindUnusedParticle(), SortParticles() and RenderParticle(). Particle

systems are on every pressure plate and on the lava.

● Video Texture (8 Points): For the implementation of this effect no resources were

used. We first generated a video of the laser of level two in Adobe Animate by

designing a grid and spinning it by 90 degrees. We exported this video as a png

https://www.assimp.org/
https://www.freetype.org/index.html
http://glew.sourceforge.net/
https://www.glfw.org/
https://glm.g-truc.net/0.9.9/index.html
https://developer.nvidia.com/physx-sdk
http://www.opengl-tutorial.org/intermediate-tutorials/billboards-particles/particles-instancing/

sequence with 72 frames with a showing speed of 24 frames per second in mind.

The png sequence is being loaded into the engine as level two is being generated.

The implementation can be found in the main.cpp file. The framerate of the game

is kept independent of the framerate of the video by multiplying the deltatime with

the increment of the loop that chooses the next picture.

● Simple Normal Mapping (4 Points): For the implementation of this effect the

resource learnopengl.com: Normal Mapping was used. A normal map of the door

texture was generated with the online tool https://cpetry.github.io/NormalMap-

Online/. In accordance with the tutorial the normal map is being loaded into the

fragment shader (shader.frag) where the normals a being chosen from the normal

map instead of the object. The effect can be toggled with the “N” key. The effect can

be seen on doors.

● Bloom/Glow (8 Points): The implementation on bloom was done with the help of

learnopengl.com: Bloom. The code can be found in the class Bloom.h and

Bloom.cpp. We updated our shaders for bloom to work properly so that they write

into two color buffers so we can use their information for the blurring effect. The

blurred fragments are chosen via a threshold in the fragment shader. The bloom

effect can be seen around the lights on the ceiling and can be toggled via the “H”

key. To help with bloom, HDR has been implemented to enable more intense lights.

Step by step instruction:

• To pass the first level of the game, the player must activate one pressure plate

via clone and the other one itself. A pressure plate is active when a player or
RePeter stands on it. The player starts by pressing “C” to switch into recording
mode and walks towards a chosen pressure plate. After a short wait, to make
sure both pressure plates are activated long enough for the door to open, the
player can hit “C” again to switch back to observing mode, and head for the
other pressure plate. The clone will follow its path, both pressure plates will be
activated, the door opens, and the level is complete.

• The second level requires a bit more steps. First the player has to push the box
to the edge of the lava pool and switch in to recording mode to record a path
jumping onto it. Then the player must proceed to the stepping plate that fell from
the ceiling. From this height the player is able to jump on top of the first RePeter
and onto the second floor. On the top floor the player activates the pressure
plate. Once this is done, a second pressure Plate will appear on the ground
floor. Pressing “C” will start a new recording for a clone to remain standing on it,
for as long as this one is active, the laser on the upper floor will remain turned
off. Switching back into observing mode, the first clone will again take its
position as a platform in between and the second one will activate the ground
floor pressure plate. All that is left to do, is to make it to the upper floor and
through the door before the clones die again.

• Level three is the last level and follows a parkour style. After 5 seconds the
lights get turned off and the player must navigate the parkour to the pressure
plates with the help of the particles.

https://learnopengl.com/Advanced-Lighting/Normal-Mapping
https://cpetry.github.io/NormalMap-Online/
https://cpetry.github.io/NormalMap-Online/
https://learnopengl.com/Advanced-Lighting/Bloom

