
SS20 Computergraphik Laserline

IMPORTANT

Before you start, make sure to set the screen resolution of your screen in the settings.ini file
located at bin/assets/settings/settings.ini! ​You can also disable animations and toggle fullscreen
for a faster (but less immersive) experience.

Brief Description of Requirements

3D Geometry
We load all geometry using the Model class. The class loads all .obj files and textures.
We are using the Assimp model loading library. We store assimp’s data in the Mesh class. This class
stores the vertex normal, position and texture coordinate vectors for each drawable entity. The Model
class creates an object using the loaded meshes. This is done by looping over each mesh, translate
each “Assimp Mesh” to our own mesh object and store them in our own object. Furthermore we load
the material of the mesh. For better performance, we cache Textures in the storage so we can use
them again without reloading.

Geometry mainly created through the GameElements class, which acts as a factory.

Playable
When starting, the framework loads all saveable parameters (see details below). This includes the
current level. The level consists of platforms, walls, the goal, power ups and the character. All game
elements are instantiated before the game loop.
The player can control the character. The player’s aim is to reach the goal before sucked in by the
void. The void moves upwards at a steady speed, which can be set in the level settings.
The path which the player might take is blocked at some points so the camera has to be flipped.
When the player wins or loses, the game shuts down (this can be disabled in the settings).

[Tip]​ ​You can finish/win the game by jumping upwards, using Space. Rotate the camera by pressing
Tab to see behind the walls. Set the flag “debug = true” to disable loosing.

Advanced Gameplay
The player has some limitations for reaching the goal. One of them is the partly blocked view (see
above), another one is the jump mechanic. The player is only able to jump above a platform (using
raycasting, see section ​Advanced Physics​). Double jumping is also added to the game, making it
harder to reach the goal.

To achieve the required game play features, we implemented the GameManager class which acts as
a state machine.

Min. 60 FPS and Framerate Independence
The game runs on (at least) 60 FPS and frame rate independence is reached through delta-timing in
the game loop. The physics and game loop run on different time steps.

Win/Loose Condition

SS20 Computergraphik Laserline

The player wins if the goal is reached before the Character touches the void plane. If the plane
touches the player first, the game is lost.
In both cases, the game shuts down. This can be disabled in the settings.

Intuitive Controls
The Character is controlled using W, A, S, D and Space. The camera is controlled using Tab. These
industry-standard controls seem to be quite intuitive.

Input is fetched using key- and mouse-callbacks.

Illumination Model
The Illumination Model of our game is based on the Bloom effect, which creates the ​apocalyptical
dark vibe. Otherwise we are using simple material.

Textures
As described in “​3D Geometry” ​we use external Textures with texture coordinates.

Moving Objects
The Character moves by input from the player. We achieve this through adding forces. For other
movement, refer to ​Advanced Physics ​and ​Vertex Shader Animation​.

Documentation
Quite meta to write a documentation about the documentation, isn’t it?

Adjustable Parameters
You are able to adjust nearly everything you can see in the game. For adding a new level, just copy
the template file and adjust parameters, make sure to name the file “levelX.ini”. Use the settings.ini to
set which level should be loaded (by setting the number of the “level” field, must be of type int). You
can also find all settings in this file.
If you want to change the size of all game elements, you can do so in this file. This is neat for
debugging and testing.

Another important feature in the settings.ini is the debug-boolean.​ If set to true, you are able to
continue playing after the game is won or lost. You can also use F3 to switch between game- and
debug-camera when in debug mode.

Note that you cannot change settings at runtime.

It is also possible to change the screen resolution, turn on/off fullscreen mode and change the refresh
rate in the settings.ini. You can also change the brightness (affects Bloom).

If you find reference loading errors, try changing the “assetPath” in settings.ini to your asset
path. ​The settings.ini file must be located in bin/assets/settings​!
Note that the ​assetPath parameter must not contain quotation marks​!

Features

Collision Detection
The collision detection is implemented by inheriting the GameManager class from the
PxSimulationEventCallback class.

https://www.dict.cc/englisch-deutsch/apocalyptical.html

SS20 Computergraphik Laserline

The Character has two separate PxShapes. One for simulation fetching and one for collision
triggering.
The collision detection is used for the Power Ups. The Goal doesn’t use collision detection as we want
the Character to reach the goal fully, not just by touching it.
The GameManager class fetches the onTrigger results and handles the events. Most relevant classes
in the project in regards of collision detection are PowerUp, Character and Physics. The setup for the
collision detection happens in the init()-method of the Physics class.
Note that when collecting the power up (left above player start position), the void’s height decreases
by 3.

Advanced Physics
We use physics for moving the player from platform to platform. Each Platform has a static rigid
collider while the Character has a dynamic one. The Character is moved by force (using
PxForceMode::eIMPULSE mode). The Character uses Raycasting to tell if a jump is possible. When
pressing Space, the Character requests a raycast downwards ([0, -1, 0]) and if the distance is below
10 units, the input is processed. There is a double-jump mechanic which allows to jump twice if
received fast enough.
The impact forces depend on the gravity so that the movement is gravity-independent.
Platform, Physics, GameElements, Character are the most relevant classes, as these contain more or
less the entire logic for the physics framework.
Update since feedback-talk 1:​ In addition, when the player reaches the goal, a confetti bomb
explodes using physics objects.

HUD
The HUD is implemented so that it shows the most important statistics and data. The following things
are shown:

● Level number and level name
● The remaining distance from the Character to the Goal
● The height of the VoidHandler

Implementation is done in the HUD class. To achieve text rendering, we use a library called
“FreeType”. This is particularly useful, because we can use own fonts. This is done by loading the
character glyph, generating the texture and storing it for later usage for all ASCII characters. Because
the HUD is independent of the rest of the scene, we use an additional shader.

View Frustum Culling
The View Frustum Culling is used to detect which platforms are visible for the camera and draws
them. Platforms which are not visible for the camera will not be drawn.

To check if a platform is inside the camera frustum, we create a testing sphere for every element and
check in every frame if the sphere is currently inside the camera frustum. The camera frustum
contains six planes (Near, Far, Top, Bottom, Left, Right).

Generating the frustum and additional functions are inside the Frustum class. Every Platform element
is checked in the render loop of the main class.

Effects

Lightmaps
Unfortunately, we didn’t make it so far, that’s why they’re missing!

SS20 Computergraphik Laserline

GPU Particle System
The Particle System is implemented using a compute and a geometry shader. We implemented the
system based on the provided tutorials. Particles are emitted from the jetback of the character when
the player jumps. Each time, 100 particles are emitted but this could easily be much more due to the
GPU performance. The system is implemented in the ​ParticleSystem.h​ file.

Vertex Shader Animation
The meteoroids at the beginning of the level are moved by the vertex shader. This happens in
animated.vs​, where a simple sinus multiplication makes them swing from left to right and vice versa.
For the final submission we implemented a flag, waving in the outer-space-wind. This happens in the
vertex shader and now all vertices are moved separate and independently from each other in order to
fulfill the provided feedback. The meteoroids were removed completely because they were annoying
and didn’t add to the experience. Enjoy! (Flag is next to the goal.)

Video Texture
You can toggle video textures on and off by setting ​animations ​in settings.ini.
Basically, every platform, both “horizons”, the void and the goal area are animated. This is done by
stepping through the different loaded textures each frame. Please note that we decided to only have
the goal texture meet the official frame rate and runtime requirements (3 seconds @ 24FPS) to keep
the loading time at least at the level it is now. (Note: It’s a repeating pattern but it is 3 seconds long.)
It would be no problem to just add more images to the textures to increase the FPS but loading takes
already very long.
We load the video textures straight forward as .gif files into vectors of unsigned ints and loop through
them.

Bloom/Glow
We are using Bloom for the character to illuminate the surroundings (like platforms etc.). This is done
by using HDR and extracting bright colors. Furthermore we are using ping-pong framebuffers.

Additional Libraries
Assimp for Model Loading (​https://www.assimp.org/​)
FreeType for HUD (​https://www.freetype.org/​)
PhysX (​https://www.geforce.com/hardware/technology/physx​)

References:
https://www.freetype.org
https://www.informatik-forum.at
https://learnopengl.com/
http://www.lighthouse3d.com/
https://en.wikibooks.org/wiki/OpenGL_Programming/Modern_OpenGL_Tutorial_Text_Rendering_01#
The_FreeType_library
Tutorials provided in TUWEL

[Hackerman-How-To-Win-Fast-Instructions]
Use every platform until you have to flip the camera for the first time. Then you can skip the platform
far left and jump directly to the platform below the goal. Then jump on the goal. If nothing happens, try
jumping around a bit and move directly to the center. If still nothing happens, check if you haven’t lost
the game already. If you haven’t, file a bug report.

https://www.assimp.org/
https://www.freetype.org/
https://www.geforce.com/hardware/technology/physx
https://www.freetype.org/
https://www.informatik-forum.at/
https://learnopengl.com/
http://www.lighthouse3d.com/
https://en.wikibooks.org/wiki/OpenGL_Programming/Modern_OpenGL_Tutorial_Text_Rendering_01#The_FreeType_library
https://en.wikibooks.org/wiki/OpenGL_Programming/Modern_OpenGL_Tutorial_Text_Rendering_01#The_FreeType_library
https://tuwel.tuwien.ac.at/mod/page/view.php?id=747127

SS20 Computergraphik Laserline

If you are tired of endless attempts and still cannot make it, change the void speed, the gravity or
whatever floats your boat in the settings! ;-)

