CG-UE 2020
Kitty Madness

Administrative

Group Name / Game Name

Kitty Madness

GitHub Link https://github.com/JakobLindner/cgue20-kittymadness
Students Huber Marlene, 01601103
Lindner Jakob, 01634393
Genre 3D Platformer/Adventure
Goal Throw items into the lava, while not falling in yourself, to advance to the next level.

Gameplay

3D Geometry

We used an .obj object-loader (see List of Libraries) and self-made/downloaded models.

Playable

Fluffy can roll around surfaces and jump. By pushing objects into the lava, it earns points to win, but dies when
falling in itself.

Advanced Gameplay

Level-logic (Tutorial, Levell and Level2), can jump on things, bounciness of objects, objects with different
point values, jump higher when key is pressed down longer,...

Min. 60 FPS and Framerate
Independence

Used delta-time - PhysX always advances exactly 1/60 independent of framerate.

Win/Lose Condition

Win: score enough points by throwing things into the lava
Lose: fall into the lava

Intuitive Controls

See List of Inputs

Intuitive Camera

See List of Inputs

Illumination Model

Normal vectors were done in Autodesk Maya or came with the 3D-files.
Material parameters are provided through a texture combining ao, roughness and metal.

Textures

All objects have UVs and textures attached. Textures were either given with models or made via Substance
Painter.

Moving Objects

Fluffy moves and by doing that, it can push/move other objects around.

Documentation

Adjustable Parameters

Screen resolution, fullscreen-mode, refresh-rate, mouse-sensitivity and VSync can be adjusted via the
settings.ini (everything else — see List of Inputs)

Collision Detection (Basic Physics)

Fluffy (dynamic actor) can stand on objects and cannot jump/move through walls, the ceiling and other
dynamic objects.

Advanced Physics

Fluffy is moved by applying forces in the given direction and it can move/push other dynamic objects around.
When something hits the lava, a corresponding particle system spawns in that place.

Heads-Up Display

Alpha-blending is used. The HUD shows the current level, score in numbers and as a score-bar or a
win/lose/loading-screen.




CG UE-2020SS

Huber Marlene, Jakob Lindner

Effects

Advanced Modelling

GPU Particle System using
Compute Shader

We used a compute shader and a shader program consisting of vertex, geometry and fragment shader to realize
this particle system. The compute shader keeps track of the global particle count via an atomic counter which is
checked when particles are added. It de-spawns particles when their “timeTolive” is over and therefore frees up
computing space for new particles. There are two shader-storage-buffers for velocity and position respectively to
read/write the in- and outputs which update those values for each particle in the buffers. Initially, positions and
velocity are generated via random numbers. The particles are drawn via VAOs, starting in the vertex shader which
passes the values on to the geometry shader, which then generates a billboarding quad for each particle; its size
in relation to its time to live (getting smaller over time). In the fragment shader a texture is applied to this quad
and the color as well as the alpha are manipulated with functions in a similar way (getting lighter and more yellow
over time).

Note: See List of Inputs for purposely triggering particles. There are particles spawned at random throughout the
game all over the lava — this is done via a random generated countdown corresponding to the delta time.

https://tuwel.tuwien.ac.at/pluginfile.php/1721131/mod page/content/37/GPU_Particles SS18.pdf

Animation

Vertex Shader Animation

This effect is only applied in the lava’s vertex shader. To get a smooth, but not too regular, waveform we
implemented a function that displaces the x and z position of the plane. To do so, we calculated this new position
for the actual vertex and two additional virtual points (not actual vertexes from the object). After the position
displacement we take all three points for the calculation of the new normal knowing that those three points have
to be planar. The fragment shader only applies a texture and makes Phong light calculations to make the new
normal visible.

https://tuwel.tuwien.ac.at/pluginfile.php/1721131/mod page/content/37/Animation SS18.pdf

Texturing

Environment Map

We load the map via an HDR-loader (see List of Libraries) and generate the cube-map from the equirectangular
image. The cube-map is used in the PBR’s diffuse and specular light calculations (IBL). An irradiance-map, a
prefiltered-map and a BRDF-texture are calculated before the actual rendering in their own shaders. For the
prefiltered-map, mipmapping is used and the different levels are applied according to the roughness of an object.
To see the difference — have a look at the “Coffee Table” compared to any other object (e.g. backside of the blue
chair). For this, we implemented an additional calculation for the Fresnel-Schlick part of the PBR-equation to take
roughness into account.

https://learnopengl.com/PBR/IBL/Diffuse-irradiance, https://learnopengl.com/PBR/IBL/Specular-IBL,
https://learnopengl.com/Advanced-OpenGL/Cubemaps

Shading

Physically Based Shading

Aside from a few (chosen) objects, everything in the rendered scene is shaded via the (Cook-Torrance BRDF) PBR
shader. For this to work, we added special textures (albedo, aoRoughMetal, normal) with all the needed
parameters encoded. The aoRoughMetal-texture holds the AO, roughness and metal values in the rgb channels in
this order. In the vertex shader, everything is calculated to be in the same (world) space (for the Normal Mapping
part, see next entry). The PBR shader supports an arbitrary amount of point and directional lights (array size set to
20, because this must be known at compiling) as well as IBL (see Environment Map entry). All these light sources
are calculated differently and therefore are added onto each other, till it generates the final color. For point and
directional lights, we only use the sample vector coming from this direction, to avoid integrating over the whole
hemisphere. For IBL we have pre-computed maps (e.g. with importance sampling) to keep runtime calculations to
a minimum.

This PBR uses a distribution function for determining the amount of microfacets on the surface that are parallel to
the halfway vector, which is affected by the roughness (e.g. smooth surface’s concentrated microfacets in one
area). The two geometry functions are calculating how much a surface’s microfacets overshadow each other and



https://tuwel.tuwien.ac.at/pluginfile.php/1721131/mod_page/content/37/GPU_Particles_SS18.pdf
https://tuwel.tuwien.ac.at/pluginfile.php/1721131/mod_page/content/37/Animation_SS18.pdf
https://learnopengl.com/PBR/IBL/Diffuse-irradiance
https://learnopengl.com/PBR/IBL/Specular-IBL
https://learnopengl.com/Advanced-OpenGL/Cubemaps

CG UE — 2020 SS

Huber Marlene, Jakob Lindner

therefore reduce the light it reflects. With the Fresnel equation we determine how reflective a surface is from
different angles. All calculations combined are giving an approximated physical shading.

https://learnopengl.com/PBR/Theory, https://learnopengl.com/PBR/Lighting

Simple Normal Mapping
(not grading relevant)

Normal maps are used solely in our PBR shader. To bring everything into world space, we calculate the TBN-matrix
in the vertex shader and pass it to the fragment shader, where we multiply it with the map’s normal values and
normalize those. After this, we can use them for light calculations.

https://learnopengl.com/Advanced-Lighting/Normal-Mapping

Post Processing

Bloom/Glow

This effect is applied on the lava and all PBR-shaded objects after they are drawn to a buffer (not the screen). In
the corresponding fragment shaders, the “bloomColor” (every fragment with a color higher than a threshold) is
outputted to a second, additional framebuffer-texture. This is blurred with another shader-program processing
the buffer content with a gaussian blur using a ping-pong-method where the program is executed multiple times.
Afterwards the blurred image is put onto the other and rendered on a single quad on the screen.

Note: The threshold in the lava shader is way smaller compared to the PBR one, because we wanted the lava to
look like it is radiating heat. No PBR object is actually glowing, we just wanted to add the possibility.

https://learnopengl.com/Advanced-Lighting/Bloom, https://learnopengl.com/Advanced-Lighting/HDR

Additional Features

Additional Effects

Shell-Shading (Fur-Shading)

Shell-shading is applied only on Fluffy without any light calculations. A geometry-shader calculates multiple layers
(shells) of the base object. The max. number of shells is restricted by hardware. Gravity and velocity are added on
the shell position, according to the objects movements in the 3D room. In the fragment-shader hairs are drawn as
points (given by a greyscale texture) on each shell.

OpenGL Programming Guide, Eighth Edition, Shreiner David, Sellers Graham, Kessenich John, Licea-Kane Bill,
2013, S.510-532;

http://www.xbdev.net/directx3dx/specialX/Fur/index.php, http://www.catalinzima.com/xna/tutorials/fur-
rendering/

Sound

Sound-library

There is background music/lava, a sound for particles, a “happy sound” for throwing things into the lava, a “dying
sound”, “win and lose” sounds and a tutorial. The sound engine is mutable (see List of Inputs).

Code/Implementation

Pair Programming

Nearly everything was done in pair-programming either via discord or later on in person.

Singleton GlobalManager is a singleton that holds all the level, window, etc. information that is accessible throughout the
project.
Anti-Aliasing We used multi-sampled buffers to decrease aliasing-artefacts. They are used before the bloom-effect, because

they cannot be used for post-processing. Therefore a swap (blit) is executed to move the buffer content after the
rendering to the multi-sampled buffer is completed.

https://learnopengl.com/Advanced-OpenGL/Anti-Aliasing



https://learnopengl.com/PBR/Theory
https://learnopengl.com/PBR/Lighting
https://learnopengl.com/Advanced-Lighting/Normal-Mapping
https://learnopengl.com/Advanced-Lighting/Bloom
https://learnopengl.com/Advanced-Lighting/HDR
http://www.xbdev.net/directx3dx/specialX/Fur/index.php
http://www.catalinzima.com/xna/tutorials/fur-rendering/
http://www.catalinzima.com/xna/tutorials/fur-rendering/
https://learnopengl.com/Advanced-OpenGL/Anti-Aliasing

CG UE — 2020 SS

Huber Marlene, Jakob Lindner

List of Inputs

WASD Move Fluffy (3 person)

Mouse/Scroll Rotate camera/zoom in and out

Space Jump/Higher jump when held for a longer time

Enter Advance from one state of the game to another at game-start-up or won/lost
ESC Quit

F3/F4 Increase/decrease illumination multiplier

F1 Toggle wire-frame mode (will deactivate bloom)

F2 Toggle back-face culling

H Toggle HUD

L Increase score (always plus 11 points, makes level skippable)
N Skip level

M Mute and unmute sounds

p Spawn 100 particles at (0.0f, 0.0f, 0.0f) with a 0.5f radius

Konami Code

Spawns random particles all over the lava (will most likely drop fps below 60 — this is an Easter egg — please do not

take this into account while grading)

List of Libraries and Header-Files

Object Loader

OBJ-Loader: https://github.com/Bly7/OBJ-Loader/tree/master/Source

Physics

PhysX-Library 4.1:_https://github.com/NVIDIAGameWorks/PhysX

GLM to PhysX converter

Converter: https://github.com/Caspila/GUInity/blob/master/Source/Converter.cpp

Sound-Library

Irrklang 1.6: https://www.ambiera.com/irrklang/

HDR-Loader stb_image 2.25: http://nothings.org/stb
Additional Sources
Models from Piotr Dyderski https://awesomepjot.org/

and Jakob Lindner https://jakob-lindner.com

and https://free3d.com/3d-model/rubber-duck-v1--614347.html

and https://sketchfab.com/3d-models/drums-d7beee9e9ed348ebae7e3b9fa09b7136
and Stanford University Computer Graphics Laboratory

and University of Utah

Sound effects

from https://www.zapsplat.com
and https://bigsoundbank.com/detail-0477-wilhelm-scream.html

Music

from Alex F. Rémich https://soundcloud.com/spin360

Textures

from https://share.substance3d.com/libraries/3866
and https://share.substance3d.com/libraries/5166
and http://www.hdrlabs.com/sibl/archive.html

4



https://github.com/Bly7/OBJ-Loader/tree/master/Source
https://github.com/NVIDIAGameWorks/PhysX
https://github.com/Caspila/GUInity/blob/master/Source/Converter.cpp
https://www.ambiera.com/irrklang/
https://awesomepjot.org/
https://jakob-lindner.com/
https://free3d.com/3d-model/rubber-duck-v1--614347.html
https://sketchfab.com/3d-models/drums-d7beee9e9ed348ebae7e3b9fa09b7136
https://www.zapsplat.com/
https://bigsoundbank.com/detail-0477-wilhelm-scream.html
https://share.substance3d.com/libraries/3866
https://share.substance3d.com/libraries/5166
http://www.hdrlabs.com/sibl/archive.html

