Computergraphik SS20
Easter Collection

Linda Ahmed 01525001
Anting Xu 01633092

Documentation for the second submission

Implementation and features from Gameplay list

3D Geometry

For loading our complex 3D models we use Assimp. Our complex models are the main

character (the rabbit), and the carrots.

Advanced Gameplay and Collision Detection (Basic PhysX)

We implemented PhysX. We used PhysX for the implementation of the collision
detection — you are not able to walk trough a stone. We also used it for the Objects.

Our rabbit jumps on the ground and is able to jump over a scaled stone.

Win/Lose condition

We have implemented a timer. You lose the game if the timer is 0 and you didn’t
collect all carrots. You also lose the game if you collect too many obstacles. You win

the game if you collected 7 carrots. (You won is displayed)

Intuitive Controls and Camera

The Controls where implemented with the aid of Keyboard_callback and

mouse_callback functions.

Source from : https://books.google.at/books?
id=bvFsDWAAQBAJ&pg=PA97&Ipg=PA97&dq=processkeyboard+c%2B
%2B+movement&source=bl&ots=ioFaXSvASZ&sig=ACfU3U2KBjAcmNZB)J
xssYUYgtN3PJWcKQA&hl=en&sa=X&ved=2ahUKEwidgLvxzrroAhVDSBUI
HUVZALAQ6AEWAHOECAKQAQ#v=0onepage&qg=processkeyboard%20c%2B %2B
%20movement&f=false

Intuitive Camera

You can enable a free camera movement, if you set the free attribute in the settings
to true. We chose to set it to false so the camera follows he main character.

Therefore there’s a fixed offset.



Computergraphik SS20
Easter Collection

Keyboard Key Function

W, A, S, D, Space Movement of the character and the
camera — forward, left, backward, right
Set the rabbit on the ground while

jumping

Mouse Move the camera around the world (if

free camera = true)

ESC Close the window

F2 Toggle FPS

F3 Toggle wire frame mode

F4 Toggle HUD

F5 Toggle Cel Shading

F6 Toggle diffuse and specular Map

F8 Toggle Frustrum Culling

F10 Toggle Normal Map

1 De-/Aktivierung - Rendern Map

2 De-/Aktivierung - Rendern Rabbit

3 De-/Aktivierung - Rendern Normalmap
4 De-/Aktivierung - Rendern Particle System

5 De-/Aktivierung - Rendern Animation

lllumination Models

The only light source we’ve implemented is a directional light. This means that all

objects are lightened with the same intensity. The light comes from the same



Computergraphik SS20
Easter Collection

direction. Ambient light, diffuse light and the specular light are calculated. We returfy
the final Color. We also implemented a cel shader by the ,CellShader”. The lighting
values are calculated for each pixel and then then quantized to a small number of
discrete shades. In our case there are four discrete shades. The cell shading can be
toggled by the Keyboard key F5. We also use light maps, diffuse and specular maps

with another light source on an object (Cube and Plane)

Textures
We load the textures via the stb_image loader class. The image data will be loaded to

the texture units on the GPU.

Moving Objects

The rabbit is our main Character which is jumping all over the ground. The particles,

the wall and the stars are also moving.

Adjustable Parameters

You can change the parameters like for example ,free camera®, the brightness of the
game, full screen etc. in the settings.ini file. The INIReader Class which was provided

from the CG-Team helped us to extract the needed information from the file.

Heads-Up Display

For the HUD we used the FreeType Library. The counter, lives, and items as well as
the FPS are displayed on the screen. The HUD can be toggled with the Keyboard Key
F4.

Effects

Lightmap Using Separate Textures
We baked the two Objects (Cube and Plane) in Blender. The cube troughs a shadow
on the plane behind. We baked our lighting information of our scene into a separate

texture and combined our diffuse texture.

CPU Particle System

We implemented the particles by using instancing to create small stars which are also



Computergraphik SS20
Easter Collection

animated. You can see how they are flying in the air in front of the wall. (under the *
Animated Stars). They are many small stars which are instanded and drawn with a

single gIDrawElementsInstances.

Hierarchical Animation
The 3 Stars are animated. We first computed the angles of the Objects, computed the
position, scale, rotation and the parent transformation. The two stars are rotating

around the middle one.

Video Texture
The Video textures flies in the middle of the room. We loaded the single frames for

the video as single Images on a Texture.

Bloom/Glow
We used the Bloom/Glow Effect on our animated stars. The color of the Glow gets an
own texture and then we blured the texture that | wanted to render. So we ensured

that our animated stars are shiny/glowy.

Simple Normal Mapping

You can see this effect on our moving wall. We used a colored texture as well as a
normal texture on our wall. A light is directly in front of our wall so you can see the
effect better. We also tough rotating the wall would be a good idea so the effect is

more clearly to see.

Cel Shading
To be on the safe side it the simple normal mapping doesn’t work we have

implemented the cell shader which can be toggled via F5.

Specular Map

We also implemented this because we thought this is the , Lightmap Using Separate
Textures” effect and then we understood that it’s not the same effect so we thought
leaving it implemented will not affect us negatively. Therefore we used a second light
source which is only used for the cube and the plane. You can see the effect by a

white highlight on the objects.



