
Submission 3: Heartbeat
Martin Rupp (11709466)
Michael Franz Landauer (11778912)

Controls:
● WASD: Camera Movement
● Left mouse button: Rotate Camera
● Right mouse button: Camera Panning
● Mouse wheel: Zoom in/out
● ESC: Exit Application
● F1: Toggle free camera
● F2: Restart demo
● F3: Draw debug info
● F4: Draw white sphere in the middle of the screen
● F5: Toggle between gauss- and bilateral-filter for volumetric light
● F11: Toggle fullscreen
● P: Pause time
● ← → : fast backward/forward (can only be used when paused)

Settings.ini:
Is loaded when starting the demo.
width=1920 # Render width in pixel [int]
height=1080 # Render height in pixel [int]
fullscreen=1 # Fullscreen [bool]
monitor=0 # Monitor index for fullscreen [int]
draw_debug=0 # Draw debug information [bool]

Demo
Libraries:
Proposal: We will use C++ with OpenGL 4.5 Core Profile on Windows Platform. We plan to program our own
framework from scratch. Based on our effects we will use Assimp for model loading, stb for image loading,
GLFW/glad for setting up the OpenGL context, glm for math and OpenAL for music.

Everything stayed the same except for the use of OpenAL, which we replaced with irrKlang.

Testing:
Tested on 2 PCs with the same GPU NVIDIA GTX 1070.

Scene:
The current Scene consists of a cave, stalactites, rocks, voronoi bunny, brick wall and a
dragon. All of these models are drawn with glDrawInstance and their position is read out of a
model matrix file. This file can be changed at runtime and gets hot reloaded. 3 Spheres
(point lights) in different colors illuminate the scene, these spheres are also animated in the
vertex shader and get blurred by the bloom shader.
Most of the models contain a diffuse map, normal map and a specular map. For the temporal
positions in the scene we use b-splines and a timecontroller (located in ressources) to
visualize the animations during the demo, these can also be updated at runtime.

Effects:
We implemented 3 Major Effects, which are Omni-directionals shadow maps, relief mapping
and volumetric light.
Other effects we implemented are: Bloom, gamma correction, specular and normal maps.
All shaders are hot reloaded when saved, so it's easy to change parameters like tau/phi for
volumetric light or the displacement factor for relief mapping.

Omni-dir shadow maps:
We implemented omni-dir shadow maps for 3 point lights in the scene. Most of the code is
very similar to the code in the lecture presentations. In addition we implemented pcf with 16
samples. The shader for rendering the cubemaps is named “omni_shadow.glsl” and the
sampling can be found in “basic.glsl”

Relief Mapping:
Relief mapping is used on the wall to the right of the stanford bunny. It is implemented in the
shader-file “relief_mapping.glsl”, where a ray is traced in the height-field of a given texture.
To find the intersection with the height-field, we search for the first intersection using linear
steps, and refine the found intersection using binary search. There are multiple adjustable
parameters, including the step count in the first linear search step (linera_step_count) and
the binary search step count (binary_search_step_count). The depth of the height-field is
normalized (zero to one range), and it can be adjusted by the parallax_depth uniform, which
is animated during the demo.

Volumetric Light
Our approach for implementing volumetric light is that we first render the scene, so we have
the depth information of the scene. As a consequence we can recalculate the absolute
position of each pixel, which we need to render volumetric light. We render volumetric light at
a quarter resolution (half in each dimension) and as input we have the depth information as
texture. The depth information needs to be downsampled, for this we use the min depth of
the 4 pixels, we also used a checkerboard pattern but the resulting image looked nicer when
using the min value. We use 50 samples for each pixel, but this can be changed in the
shader “vol_light_optimized.glsl”, phi and tau can also be changed in the shader. For
calculation we use the same formula as in the presentation, expect for the multiplication
factor we use the attenuation factor instead of tau. We also use a bayer pattern to avoid

aliasing artefacts. After the calculation we apply a bilateral-filter 2 times and then a
gauss-filter, with Hotkey F5 this can be switched to 3 times gauss filter. These both filters are
implemented using compute shaders as 2 pass filters (“bilateral_hori_compute.glsl”,
“bilateral_hori_compute.glsl”, gaussian_hori_compute.glsl”, “gaussian_hori_compute.glsl”).
The bilateral filter uses a linearized depth texture which is calculated inside the vol_light
shader.
After this the final image gets composed in the “blend.glsl” shader and upsampled by
hardware lerp. Due to color banding effects we also apply a dither noise for the resulting
image.

Minor Effects:
We implemented bloom/glow in the “blend.glsl”. In the basic shader we render to an
additional texture for those pixels we want to blur. This effect is mostly used for the light
spheres in the “light_sphere.glsl” shader. We experimented with a lower threshold factor but
it didn't fit well in the scene.
For more details we implemented normal mapping and specular maps to give the cave a
realistic appearance. This is done in “basic.glsl”.
We also implemented correct gamma correction and hdr rendering with an exposure time.

Additional Features:
● Shader, B-Splines and Timings for B-Splines Hot Reloading:

Our shader and bspline files are stored in the ./resources/shaders and
./resources/bsplines directories, and are hot-reloaded by the application. For timing
the b-splines a time controller is used with time files under ./resources/times.

● Window resizing
The application window is resizable and all affected framebuffers are automatically
resized.

● Model Matrices:
For rendering multiple objects with the same meshes we use Instance rendering
where we store the matrices in an SSBO. The model matrices are red out at the start
of the demo. These model matrices are located in ./resources/model_matrices/ and
are encoded in 3 x vec3. Where the first vec3 is the scaling vector, the 2nd the
rotation and the 3rd the translation vector.

