
Implementation Overview

Resource Loading & Object Construction

●​ GLTF Loader

o​ Utilizes the tinygltf library to load “.gltf” and “.glb” files at startup.

o​ Extracts mesh geometry (positions, normals, UVs), material definitions, and

node transforms.

●​ RenderObject Management

o​ All RenderObject instances are stored in a central std::vector and go through

the render pass.

o​ Each frame, the game loop iterates through visible objects and issues draw

calls using their assigned shader and world-space transform.

Physics & Collision

●​ PhysX Integration

o​ Integrated NVIDIA PhysX (v5.0) for rigid-body dynamics and character

controller.

o​ The player is a PxCapsuleController; collisions with static and dynamic meshes

are handled via PhysX’s querying/filtering.

o​ A custom FilterShader determines collision responses between different

object types (player vs. loot, player vs. world geometry, remote vs. pressure

plate, etc.).

o​ Gravity, jumping forces, and simple rigid-body interactions use PhysX.

Worlds & Shaders

●​ Dual-World System

o​ Implemented two “parallel” worlds:

1.​ Bloomy World

2.​ Dither World

o​ Pressing Right Mouse Button (LMB) triggers a world switch:

▪​ Player movement is temporarily disabled.

▪​ A full-screen quad fade animation interpolates between the two

worlds.

▪​ Internally, an enum flags which objects should be rendered.

▪​ Some objects exist in both worlds, others only in one.

●​ Shader Pipeline

o​ On startup, all GLSL shaders (vertex + fragment) are compiled and linked.

o​ For each object, the engine selects:

▪​ World-specific material (e.g., bloom post-process for Bloomy world;

dither post-process for Dither world).

▪​ Lighting model (Phong/Blinn-Phong with shadow map integration).

o​ Render passes:

▪​ Shadow pass (generate shadow map from sun/spot light)

▪​ Base Pass (render scene with lighting etc)

Misc

●​ Fog

o​ Linear Depth Fog (in Bloomy world): computed in fragment shader

●​ HUD & GUI (ImGui)

o​ Integrated for all in-game menus & HUD.

o​ Main Menu: initial screen on startup, with “Start Game” & “Quit.”

o​ Pause Menu: toggled via Esc, lets player Resume / Restart / Quit.

o​ Game Over Menu: shown if player health ≤ 0.

o​ Win Screen: displayed once the remote is thrown into the wormhole/pit.

o​ Controls Guide: toggled via Q, displays keybindings.

o​ HUD Bars:

▪​ Health Bar (current HP / max HP)

▪​ Stamina Bar (depletes on sprint, refills over time)

▪​ Remote Charge Bar (only shown after picking up remote; depletes in

Dither world, recharges at puddles)

Feature List

GLTF Loader
Linear Depth Fog

Procedural Sky Noise

Gradient Skybox

Menus

HUD

Vertex Shader Animation

Loot Pickup Animation

Procedural Textures

Physics System

Dither Shader, Texture Shader, etc.

Shadow Mapping with PCF

Player State

First-Person Camera with Head-Bob

Collision

World Switching

Object Picking

Hazards

Remote Throwing

Pressure-Plate Trigger

Normal Mapping

Bloom/Glow Post-Process

Ambient & SFX Audio

Effects Implemented

●​ Shadow Map + PCF: Soft shadows with stylized dither edge.

●​ Vertex Shader Animation: noise ripples for puddles; GPU‐only floating/rotation for

loot.

●​ Procedural Texture: Animated noise for puddle liquid; noise for rough floors.

●​ Simple Normal Mapping: Standard TBN‐based normal mapping for detailed surface

lighting.

●​ Bloom/Glow: MRT (HDR + brightness), blur bright areas via ping-pong FBO,

composite blurred brightness with HDR (Dither world: puddles, Bloomy world: key

objects, dithered water)

●​ Dither Shader: Ordered Bayer‐matrix dithering for the Dither world (and underwater

transitions).

Gameplay Description

The main gameplay sequence starts with finding and picking up the remote. Then the remote

indication appears, and it’s possible to switch to the dither world with LMB. In the dither

world, the remote loses charge and the player consistently takes damage. They need to run

to a puddle, where the remote recharges, the damage stops, and the player receives a small

healing boost. When switching to the bloomy world, health regenerates. The dither world is

taking over the bloomy world in the form of a dither floor moving towards the player, causing

significant damage. Scattered over both worlds, various platforms are in the sky, on closer

inspection it is clear that the player has to jump on the platforms and switch worlds in

between to advance. On top is a note which explains how to win the game.

The player needs to run from puddle to puddle in the dither world until they find the final

“wormhole.” There they have to throw the remote into the hole - otherwise, they will be

stuck in the dither world forever and slowly die.

Additional Libraries

●​ Tiny glTF - https://github.com/syoyo/tinygltf

●​ PhysX - https://developer.nvidia.com/physx-sdk

●​ Dear Imgui - https://github.com/ocornut/imgui

●​ SFML - https://www.sfml-dev.org/

https://github.com/ocornut/imgui

