
Documentation
Admin

Group/Game Name: Group 15 - Polygon Survivors
Github Link (invite ptvc25-tutors!): https://github.com/lucio1199/ptvc25-polygonsurvivors
Link from last year: https://github.com/AdrianKzbr/ptvc24-polygonsurvivors
Students (names & student ID numbers): Delen Lucio 11713066, Adrian Kurzbauer
12024005
Graphics API: Vulkan

Note: We are using a project we used in the last semester of PTVC.

Description
​
Story (max. 4 sentences):
You find yourself in a digital dream world as a sphere. But the other simpler objects realize
your anomalous form and higher computational load and want to reduce your complexity.
Fight them and survive as long as possible. Be vary of their dangerous bullets and use more
complex items to your advantage.

Gameplay (max. 4 sentences):
Move around and jump in order to dodge attacks. Shoot the enemies first or get eliminated
when they catch you.

Controls

General Controls

●​ ESC: Quit
●​ F1: Toggle polygon draw modes (fill, wireframe)
●​ F2: Toggle culling modes (none, backface, frontface)
●​ F3: Switch camera modes (player tracking, free cam, drag & strafe cam)

Effect/Debug Controls

●​ T: Toggle texture uv display
●​ N: Toggle normals display
●​ B: Toggle lightmap sampling from baked texture
●​ M: Toggle normalmapping

Player Controls

●​ WASD: Move player
●​ Space: Jump
●​ RMB + Mouse Movement: Rotate player and camera (in tracking / free cam)
●​ LMB: Shoot

https://github.com/lucio1199/ptvc25-polygonsurvivors
https://github.com/AdrianKzbr/ptvc24-polygonsurvivors

Camera Modes

●​ Player Tracking Camera: Follows and rotates with player
○​ Mouse Scroll change distance

●​ Free Camera:
○​ WASD to move
○​ RMB + Mouse to rotate

●​ Drag & Strafe Camera:
○​ LMB + Mouse to move
○​ RMB + Mouse to rotate
○​ Mouse Scroll change distance

Additional libraries
assimp, bullet3 physics, shaderc

Gameplay
Mandatory
3D Geometry (6 points)

●​ Included assimp library
●​ Import obj file from dynamic path
●​ Convert assimp mesh to geometry data
●​ Used for pistol model

Playable (3 points)
●​ Physics based player movement, camera tracking player
●​ Shoot enemies to win or lose by getting hit by enemy

Min. 60 FPS and Framerate Independence (3 Points)
●​ Implemented time handler that gets updated at the start of the render loop
●​ Enemy movement, player and bullet physics and particles based on deltaTime

Win/Lose Condition (3 Points)
●​ Win by hitting all enemies with pistol shots
●​ Lose by getting hit by an enemy

Intuitive Controls (2 Points)
●​ Implemented input system
●​ Input system sets up key callbacks
●​ Objects like player and pistol check for input
●​ Switching through render modes enabled by sending inputs to shaders

Intuitive Camera (2 Points)
●​ Camera tracking the player “over the shoulder”
●​ Rotation only limited by the floor
●​ Scroll limited to not clip into the player and to a reasonable distance overlooking the

arena
Illumination Model (2 Points)

●​ Material on all objects
●​ 1 Point light in the middle of the arena
●​ 1 Directional light shining straight down
●​ Normal vectors generated by geometry or imported

Textures (2 Points)
●​ Textures on all objects
●​ UV coordinates generated by geometry or imported
●​ Mipmapping and trilinear filtering enabled for all textures loaded - Lightmaps and

generated Images excluded
Moving Objects (2 Points)

●​ Moving player, projectiles and enemies
Documentation (1 Point)
Adjustable Parameters (1 Points)

●​ Screen resolution and fullscreen-mode changeable in assets/settings/windows.ini file

Optional Gameplay Features
Collision Detection (6 Points)

●​ Implemented Physics with bulletPhysics
●​ Setup physics world
●​ Custom Rigidbody System handling movement, transforms and collisions
●​ https://www.kodeco.com/2606-bullet-physics-tutorial-getting-started/page/3
●​ started with the reference, expanded to resemble a Rigidbody from Unity Engine with

transforms to allow object hierarchy and a closed system handling all physics
Advanced Physics (4 Points)

●​ Projectile handled dynamically, as well as player in a controlled way
●​ Collision callbacks and triggers not implemented

Effect Features

Lighting: Lightmap using In-Game Calculation (12 Points)
●​ included shaderc library to import text shaders
●​ Implemented lightmap baking at startup for the background
●​ Saves the ambient and diffusion phong part to an image, which is passed to the

shader for sampling and rendering the specular phong part
●​ https://www.youtube.com/watch?v=CURcteWRmKs
●​ Used the videos in the playlist as starting point and built around it

Advanced Modelling: CPU Particle System (8 Points)
●​ Particles handled on the cpu, then sent to shader
●​ Spawns different oriented and colored particles to signal victory and game over

Animation: Hierarchical Animation (4 Points)
●​ Hierarchy based on the custom rigidbodies and transforms, allowing to easily attach

objects to other objects
●​ Pistol is attached to player, but always aims up and down to follow the camera

Texturing: Procedural Texture (8 Points)
●​ Quantized Perlin Noise for the Background
●​ Red and blue colors shifted slightly to create a “dreamy” effect

Shading: Simple Normal Mapping (4 Points)
●​ Load normal map from texture and send to shader for sampling
●​ Normals created with geometry​

Walk-through

Shoot all 10 enemies to win or touch one to lose.

https://www.kodeco.com/2606-bullet-physics-tutorial-getting-started/page/3
https://www.youtube.com/watch?v=CURcteWRmKs

	Admin
	
	Description
	Controls
	Additional libraries
	Gameplay
	Mandatory
	Optional Gameplay Features
	Effect Features
	Walk-through

