Pale Watcher

PTVC Submission 2

Group/Game Name: Pale Watcher
Students:
e Dominik Gramegna, 12224269
e Marcel Kozonits, 12122382
Genre: First-person Survival/Horror
Goal: Explore the dark forest, find the key, turn the power on return to the house to escape
the mysterious creature hunting you down.

The implementation for Submission 2 includes advanced gameplay mechanics with complex
object loading, with the “Watcher” which tries to hunt you down and kill you, while you, the
player, are trying to find a key in the spooky woods to turn on the power again, return to
your house and enter it to be safe again. Different end screens for surviving and for dying are
added. The player has an inventory to keep track of picked up and util items (just the key for
us). Some of the objects found in the game are interactable.

Gameplay Implementation (according to defined Features/Effects)

Feature Description

3D Geometry Many different scene objects are loaded from a .obj file - these are some
(partly low-poly) free resources from the internet. We imported all of
these as Blender projects and exported the triangulated .obj with all
needed parameters (Vertices, normals, uy, ...) we need.

In the Geometry.cpp/.h files, we implemented a loadObj function, which
parses the important data from the .obj file and puts the data in the
Geometry object.

In the Assets.cpp/.h files, all provided models are collected and loaded
when needed for the scene.

Playable The game is currently playable by controlling the main player (1st person
view). The controls are listed below in the document. The player can walk
around and jump in the scene, with collision and gravity enabled. There is
a Debug Camera when activating F3 (Debug Mode), then pressing P.

Min. 60 FPS and | Currently, on the Nvidia RTX 2060 Super, the gameplay on 1920x1080 is




Framerate always above the minimum requirement, different settings like view

Independence frustum culling and the fog improve this significantly.

Win/Lose Win: The player needs to find the key in the forest, to be able to turn on

Condition the power again, return to the house and enter it. (The current task is
shown in the lower left corner all the time)
Lose: The watcher is always trying to kill the player, but is not allowed to
move towards him if he is looked at. If the watcher gets too close to the
player, he kills him.

Intuitive Intuitive Controls are implemented, the player is moving with WASD,

Controls which is typical for computer games, jumps with Space-Bar (and sprints
with shift when Debug Mode (F3) enabled). Interaction with the scene is
possible with left mouse click, with which the player can pick up items or
interact with them (key pickup, power turn on, enter house).

Intuitive For playing the game, the camera is always attached to the player.

Camera For Debug purposes, the default Orbital camera from the Framework is in
place to freely move in the world (Press F3 for Debug Mode > then P)

lllumination The Scene has a directional light source from the sky (moon shining), and

Model the player has a point light to simulate a flashlight. When the player
interacts with items, they emit a short light impulse which is rendered in
the game. Also, when the power is turned on, street lamps start to emit
light (near the house and power plant)
Each object has model properties assigned to modify reflection, and
every model has correct normal vectors (Exported with Blender).

Textures Textures are loaded with a .png loader (Can be found in Texture.cpp/.h)

and are attached correctly to all game objects currently.

There is also a cubemap texture for the sky and a terrain texture for the
ground.

Mipmapping and Trilinear Filtering is enabled for png-Textures.

Moving Objects

The watcher is constantly moving towards the player, except when he is in
the player's view frustum or when he has already been killed.

Documentation

This document summarizes the most important aspects of our game.

Adjustable Screen resolution, FPS limit and Fullscreen can be changed in the
Parameters window.ini file before starting the game (without recompiling)
Optional: Watcher is constantly moving the player, the player has to complete
Advanced achievements to complete the game, like the key finding, turning power
Gameplay on again and returning to the house, while not being killed by the

watcher. Music is also added to intensify the horror experience with
distortion and jumpscares. Three different difficulties of the watcher are




given:
e Normal: Watcher is hunting you, but only when you are in range
and looking away.
e Hard: Watcher is faster, and he can also head to you to a certain
extent when you look at him.
e Extreme: Same as hard & when being in range of Watcher and
looking at him at least 1,5s, you get killed instantly.

* In Range means when your Screen is somehow distorted because
Watcher is near.

Optional: PhysX is integrated into the game and enabled for the Terrain and Player.
Collision The scene objects also do have enabled physics, which makes it
Detection realistically to not be able to run through a house or tree for example.
Optional: The logic of the watcher, which hunts down the player, is scripted
Scripting separately with LUA / luaaa. There are three difficulties for the Watcher
Language already included (see Optional: Advanced Gameplay), but you could
Integration modify these scripts at any time before starting the game.
While playing the game, you can also switch the difficulty in F3 Debug
Mode (by using F4-F6).
Optional: This can be enabled with F8 and is implemented with the files

View-Frustum
Culling

Frustum.cpp/.h and with appropriate methods in Geometry and checks in
Main.cpp.

In the Debug Info besides F8 Control, you see how many Objects are
currently shown vs. how many objects exist in the scene.

Optional: There is a HUD for displaying debug text and controls, as well as a

Heads-Up crosshair in the middle of the screen.

Display The Text is loaded by .fnt and .png files and the .fnt is parsed with all
information about positioning, spacing etc. of each character. This
information is used to render the correct UV coordinates in the HUD to
display the correct letter (text.* shaders and HUD.cpp/.h files)

A simple view for the next task of the player and the current inventory is
also displayed.

With F3, the HUD display and the “Debug-Mode” can be toggled, this
enabled the function of some other debug controls, e.g. Frustum Culling
or Wireframe mode.

Optional: When the player gets killed by the watcher, the camera changes to the

Camera Object | watcher, which still gets nearer to the player until the end screen is

Tracking shown and til there, the watcher is being tracked by the camera




It is rather hard to see -> it is best to try that one out with Difficulty Hard
or Extreme as Watcher has movement logic in front of the player there.

Post-Processing
Contours via
Edge Detection

Effects: We implemented the terrain shader files (terrain.*) for a tessellated

Terrain: terrain, and parts of implementation can be found in

Tessellation HeightmapTerrain.cpp/.h and TerrainShader.cpp/.h.

from Height

Map The provided heightmap is in format .png and was generated on a
website, which allows to generate different images with perlin noise.
https://learnopengl.com/Guest-Articles/2021/Tessellation/Tessellation

Effects: At the end of the map, is a brick wall, which is completely created at run

Texturing: time. This brick wall uses noise and fractal functions to calculate the

Procedural coloring to make it look like old bricks.

Texture

Effects: This was implemented with FrameBuffer.cpp/FrameBuffer.h files and

PostProcessor.cpp/.h files. Additionally, the texture and postprocess
shaders exist for this.

The outlines are just present for the interactable objects, therefore just
the key (which is the only thing which can be put in the inventory), the
power plant and the house have the outline, but only if it is really
interactable (example: power plant just when key found and not turned
on yet)

Parts of https://learnopengl.com/Advanced-OpenGL/Framebuffer

Additional Game Features (not defined in Requirements)

The following feature also exist in the game currently:
e Rendering a Coordinate-Grid or model normals: can be enabled, useful for debugging
coordinated of objects

Skybox with Cubemap-Texture for a Night sky (with a simulated moon glow)

Switch Camera (Orbital simple camera or player)

Show object wireframes, terrain wireframes, toggle backface culling

Light lamps just turn on the light after the power is turned on.

Sound effects like a constant background noise, different walking and running noises,

random jumpscares and jumpscares when the player gets too close to the watcher.

Scene gets distorted when the player is near the watcher.

e Different end screens for entering the house or getting killed by the watcher.

Loading and start screen with difficulty selection



https://learnopengl.com/Guest-Articles/2021/Tessellation/Tessellation
https://learnopengl.com/Advanced-OpenGL/Framebuffers

Short gameplay summary:

e Select a difficulty and click enter. You start at the house.
Click F3 to enable the HUD displaying (shows you your position).
e Go to position x: -40, z: -60 and in the middle of the rock formation you can find the
key hovering, left mouse click on it to pick it up.
Go to position x: -40, z: 60 and click on the power plant to turn it on.
Go back to the house and click on it to enter it.
Try to not get killed by the watcher in the meantime.

All controls:

e Player Controls:
WASD: Move
Space: Jump
Mouse: Look around
R: Reset Position
F3: Toggle this HUD
e Audio:
Volume:,/. to adjust
M: Toggle music
N: Toggle sound effects
e Debug Controls (when F3 Debug is enabled):
Shift: Run
P: Switch camera
F1: Global Wireframe
F2: Culling
F8: Frustum Culling
H: Terrain Wireframe
L: Grid
U: Normals
O: Outlines
I: Toggle Distortion
K: Test Jumpscare
J: Move Watcher
F: Toggle Fog
G / Shift+G: Fog Distance
B / Shift+B: Fog Start
V / Shift+V: Skybox Fog
F4: Load Normal Watcher Script
F5: Load Hard Watcher Script



F6: Load Extreme Watcher Script
F9: Reload Current Watcher Script

Additional Libraries used:

e Weincluded stb_image.h and stb_image_write.h files to simplify loading .png

textures (see https://github.com/nothings/stb/blob/master/stb_image.h).
e We also used physx for the gravity and collision management with other objects in
the scene.

e OpenAL (https://openal.org/downloads/) was used for the audio system.


https://github.com/nothings/stb/blob/master/stb_image.h
https://openal.org/downloads/

	Pale Watcher 
	PTVC Submission 2 
	Gameplay Implementation (according to defined Features/Effects) 
	Additional Game Features (not defined in Requirements) 
	Short gameplay summary: 
	All controls: 
	Additional Libraries used: 


