
Pale Watcher 

PTVC Submission 2 

 

 

Group/Game Name: Pale Watcher 

Students: 

●​ Dominik Gramegna, 12224269 

●​ Marcel Kozonits, 12122382 

Genre: First-person Survival/Horror​
Goal: Explore the dark forest, find the key, turn the power on return to the house to escape 

the mysterious creature hunting you down. 

 

The implementation for Submission 2 includes advanced gameplay mechanics with complex 

object loading, with the “Watcher” which tries to hunt you down and kill you, while you, the 

player, are trying to find a key in the spooky woods to turn on the power again, return to 

your house and enter it to be safe again. Different end screens for surviving and for dying are 

added. The player has an inventory to keep track of picked up and util items (just the key for 

us). Some of the objects found in the game are interactable. 

Gameplay Implementation (according to defined Features/Effects) 

Feature Description 

3D Geometry Many different scene objects are loaded from a .obj file - these are some 
(partly low-poly) free resources from the internet. We imported all of 
these as Blender projects and exported the triangulated .obj with all 
needed parameters (Vertices, normals, uv, …) we need. 
 
In the Geometry.cpp/.h files, we implemented a loadObj function, which 
parses the important data from the .obj file and puts the data in the 
Geometry object. 
 
In the Assets.cpp/.h files, all provided models are collected and loaded 
when needed for the scene. 

Playable The game is currently playable by controlling the main player (1st person 
view). The controls are listed below in the document. The player can walk 
around and jump in the scene, with collision and gravity enabled. There is 
a Debug Camera when activating F3 (Debug Mode), then pressing P. 

Min. 60 FPS and Currently, on the Nvidia RTX 2060 Super, the gameplay on 1920x1080 is 



Framerate 
Independence 

always above the minimum requirement, different settings like view 
frustum culling and the fog improve this significantly. 

Win/Lose 
Condition 

Win: The player needs to find the key in the forest, to be able to turn on 
the power again, return to the house and enter it. (The current task is 
shown in the lower left corner all the time) 
Lose: The watcher is always trying to kill the player, but is not allowed to 
move towards him if he is looked at. If the watcher gets too close to the 
player, he kills him. 

Intuitive 
Controls 

Intuitive Controls are implemented, the player is moving with WASD, 
which is typical for computer games, jumps with Space-Bar (and sprints 
with shift when Debug Mode (F3) enabled). Interaction with the scene is 
possible with left mouse click, with which the player can pick up items or 
interact with them (key pickup, power turn on, enter house). 

Intuitive 
Camera 

For playing the game, the camera is always attached to the player. 
For Debug purposes, the default Orbital camera from the Framework is in 
place to freely move in the world (Press F3 for Debug Mode > then P) 

Illumination 
Model 

The Scene has a directional light source from the sky (moon shining), and 
the player has a point light to simulate a flashlight. When the player 
interacts with items, they emit a short light impulse which is rendered in 
the game. Also, when the power is turned on, street lamps start to emit 
light (near the house and power plant) 
 
Each object has model properties assigned to modify reflection, and 
every model has correct normal vectors (Exported with Blender). 

Textures Textures are loaded with a .png loader (Can be found in Texture.cpp/.h) 
and are attached correctly to all game objects currently.​
There is also a cubemap texture for the sky and a terrain texture for the 
ground. 
Mipmapping and Trilinear Filtering is enabled for png-Textures. 

Moving Objects The watcher is constantly moving towards the player, except when he is in 
the player's view frustum or when he has already been killed. 

Documentation This document summarizes the most important aspects of our game. 

Adjustable 
Parameters 

Screen resolution, FPS limit and Fullscreen can be changed in the 
window.ini file before starting the game (without recompiling) 

Optional: 
Advanced 
Gameplay 

Watcher is constantly moving the player, the player has to complete 
achievements to complete the game, like the key finding, turning power 
on again and returning to the house, while not being killed by the 
watcher. Music is also added to intensify the horror experience with 
distortion and jumpscares. Three different difficulties of the watcher are 



given: 
●​ Normal: Watcher is hunting you, but only when you are in range 

and looking away. 
●​ Hard: Watcher is faster, and he can also head to you to a certain 

extent when you look at him. 
●​ Extreme: Same as hard & when being in range of Watcher and 

looking at him at least 1,5s, you get killed instantly. 
 
* In Range means when your Screen is somehow distorted because 
Watcher is near. 

Optional: 
Collision 
Detection 

PhysX is integrated into the game and enabled for the Terrain and Player. 
The scene objects also do have enabled physics, which makes it 
realistically to not be able to run through a house or tree for example. 

Optional: 
Scripting 
Language 
Integration 

The logic of the watcher, which hunts down the player, is scripted 
separately with LUA / luaaa. There are three difficulties for the Watcher 
already included (see Optional: Advanced Gameplay), but you could 
modify these scripts at any time before starting the game.​
​
While playing the game, you can also switch the difficulty in F3 Debug 
Mode (by using F4-F6). 

Optional: 
View-Frustum 
Culling 

This can be enabled with F8 and is implemented with the files 
Frustum.cpp/.h and with appropriate methods in Geometry and checks in 
Main.cpp. 
In the Debug Info besides F8 Control, you see how many Objects are 
currently shown vs. how many objects exist in the scene. 

Optional: 
Heads-Up 
Display 

There is a HUD for displaying debug text and controls, as well as a 
crosshair in the middle of the screen. 
The Text is loaded by .fnt and .png files and the .fnt is parsed with all 
information about positioning, spacing etc. of each character. This 
information is used to render the correct UV coordinates in the HUD to 
display the correct letter (text.* shaders and HUD.cpp/.h files) 
 
A simple view for the next task of the player and the current inventory is 
also displayed. 
 
With F3, the HUD display and the “Debug-Mode” can be toggled, this 
enabled the function of some other debug controls, e.g. Frustum Culling 
or Wireframe mode. 

Optional: 
Camera Object 
Tracking 

When the player gets killed by the watcher, the camera changes to the 
watcher, which still gets nearer to the player until the end screen is 
shown and til there, the watcher is being tracked by the camera ​
​



It is rather hard to see -> it is best to try that one out with Difficulty Hard 
or Extreme as Watcher has movement logic in front of the player there.​
 

Effects: ​
Terrain: 
Tessellation 
from Height 
Map 

We implemented the terrain shader files (terrain.*) for a tessellated 
terrain, and parts of implementation can be found in 
HeightmapTerrain.cpp/.h and TerrainShader.cpp/.h. 
 
The provided heightmap is in format .png and was generated on a 
website, which allows to generate different images with perlin noise.​
​
https://learnopengl.com/Guest-Articles/2021/Tessellation/Tessellation 

Effects: 
Texturing:​
Procedural 
Texture 

At the end of the map, is a brick wall, which is completely created at run 
time. This brick wall uses noise and fractal functions to calculate the 
coloring to make it look like old bricks. 

Effects: 
Post-Processing 
Contours via 
Edge Detection 

This was implemented with FrameBuffer.cpp/FrameBuffer.h files and 
PostProcessor.cpp/.h files. Additionally, the texture and postprocess 
shaders exist for this. 
 
The outlines are just present for the interactable objects, therefore just 
the key (which is the only thing which can be put in the inventory), the 
power plant and the house have the outline, but only if it is really 
interactable (example: power plant just when key found and not turned 
on yet) 
 
Parts of https://learnopengl.com/Advanced-OpenGL/Framebuffer 

 

Additional Game Features (not defined in Requirements) 

The following feature also exist in the game currently: 

●​ Rendering a Coordinate-Grid or model normals: can be enabled, useful for debugging 

coordinated of objects 

●​ Skybox with Cubemap-Texture for a Night sky (with a simulated moon glow) 

●​ Switch Camera (Orbital simple camera or player) 

●​ Show object wireframes, terrain wireframes, toggle backface culling 

●​ Light lamps just turn on the light after the power is turned on. 

●​ Sound effects like a constant background noise, different walking and running noises, 

random jumpscares and jumpscares when the player gets too close to the watcher. 

●​ Scene gets distorted when the player is near the watcher. 

●​ Different end screens for entering the house or getting killed by the watcher. 

●​ Loading and start screen with difficulty selection 

https://learnopengl.com/Guest-Articles/2021/Tessellation/Tessellation
https://learnopengl.com/Advanced-OpenGL/Framebuffers


Short gameplay summary: 

●​ Select a difficulty and click enter. You start at the house. 

●​ Click F3 to enable the HUD displaying (shows you your position). 

●​ Go to position x: -40, z: -60 and in the middle of the rock formation you can find the 

key hovering, left mouse click on it to pick it up. 

●​ Go to position x: -40, z: 60 and click on the power plant to turn it on. 

●​ Go back to the house and click on it to enter it. 

●​ Try to not get killed by the watcher in the meantime. 

All controls: 

●​ Player Controls:​
WASD: Move​
Space: Jump​
Mouse: Look around​
R: Reset Position​
F3: Toggle this HUD 

●​ Audio:​
Volume: ,/. to adjust​
M: Toggle music​
N: Toggle sound effects 

●​ Debug Controls (when F3 Debug is enabled):​
Shift: Run​
P: Switch camera​
F1: Global Wireframe​
F2: Culling​
F8: Frustum Culling​
H: Terrain Wireframe​
L: Grid​
U: Normals​
O: Outlines​
I: Toggle Distortion​
K: Test Jumpscare​
J: Move Watcher​
F: Toggle Fog​
G / Shift+G: Fog Distance​
B / Shift+B: Fog Start​
V / Shift+V: Skybox Fog​
F4: Load Normal Watcher Script​
F5: Load Hard Watcher Script​



F6: Load Extreme Watcher Script​
F9: Reload Current Watcher Script 

Additional Libraries used: 

●​ We included stb_image.h and stb_image_write.h files to simplify loading .png 

textures (see https://github.com/nothings/stb/blob/master/stb_image.h). 

●​ We also used physx for the gravity and collision management with other objects in 

the scene. 

●​ OpenAL (https://openal.org/downloads/) was used for the audio system. 

 

https://github.com/nothings/stb/blob/master/stb_image.h
https://openal.org/downloads/

	Pale Watcher 
	PTVC Submission 2 
	Gameplay Implementation (according to defined Features/Effects) 
	Additional Game Features (not defined in Requirements) 
	Short gameplay summary: 
	All controls: 
	Additional Libraries used: 


