
Mudslide Madness

Starting the Game

When the game starts, it loads configuration from "assets/settings/settings.ini"

Resolution, fullscreen mode and camera properties can be adjusted.

Current Controls

W A S D Control Car (or debug camera)

Left Mouse - Change look direction of the debug camera

P - Switch between Follow and Debug Camera

R - Reset Level

H - Toggle HUD

F3 - Toggle Cursor lock

ESC - Exit Game

F1 - Change Polygon Mode (Full | Wireframe)

F2 - Change Polygon Culling (Remove nothing | Remove backfacing triangles |

Remove frontfacing triangles)

N - Toggle normals rendering

T - Toggle texcoord rendering

Gameplay Features

3D Geometry

The player controlled car and the track (.obj) are loaded using the library ASSIMP

Playable

A car can be driven around the race track.

Framerate Independence and min. 60FPS

All movement and time related data is multiplied by the last frame time to achieve

framerate independence. Performance was tested using mangohud. It always

exceeded 60 FPS.

Win/Loose Condition

The goal is to drive the car around the track as fast as possible. There are several

hidden checkpoints that have to be passed in order for a lap time to count.

The car can get damaged when driving into obstacles reducing it's health. When

health reaches 0 the car looses its power and the level has to be reset to

continue. Also missing checkpoints results in an invalid lap.

Controls

Continuous input is implemented using polling (eg. W A S D) and single

events (e.g P) use callbacks. see Controls.h and Controls.cpp

Camera

For our game, a fixed camera is used (FollowCamera Class). Pressing P toggles

the debug camera, which can be moved around freely using W A S D and Left

Mouse

Illumination Model

Currently there is a fixed directional light (sun). All visible objects (except

particles) have a material and use the phong lighting model.

Textures

The game supports textures. (Currently only the trees have a texture, everything

else are materials / vertex colors). Textures are correctly mipmapped and use

trilinear filtering. See DdsLoader.h and DdsLoader.c for the implementation.

Moving objects

Physically simulated moving car.

https://github.com/flightlessmango/MangoHud

Adjustable Parameters

All adjustable parameters are located in "assets/settings/settings.ini"

Resolution

Fullscreen mode

Background color

Camera fov

Camera near and far plane

Optional Gameplay Features

Collision Detection (Basic Physics)

The library JoltPhysics is used to simulate collisions.

Advanced Physics

The library JoltPhysics is used to simulate a controllable car. When the car

collides into static objects, it gets damaged. After a few hits, the engine starts

emitting a white smoke. The more damaged the car is, the more smoke is emitted

and the blacker the smoke is.

Heads-Up Display

HUD to display (best) lap time and game over screen. Can be toggled using H

•

•

•

•

•

https://github.com/jrouwe/JoltPhysics
https://github.com/jrouwe/JoltPhysics

Effects

Shadow Map with PCF

A separate render pass is used to render the scene from the light's perspective.

The depth attachment of this pass is then used in the normal render pass to be

able to evaluate if the pixel is in a shadow or not. Shadow acne is dealt with the

hardware bias functionality provided by vulkan and an additional (very small) bias

in the fragment shader. Peter Panning is no problem, as there are no thin objects

/ the shadow map resolution is high enough. (Hardware) PCF is enabled for the

shadow map. Only the provided materials from the TUWEL course were used as

reference:

Shadow Mapping Tut from TUWIEN

Sasha Willems' Vulkan shadow mapping example

GPU Particle System using compute shader

See Particles.h and Particles.cpp.

The Particle system manages its particles in a compute shader. The particles

have a position, velocity, color and time-to-live. The particle system was

implemented using the Tutorial from TUWien as reference.

The particles can be seen when driving the car.

Hierarchical Animation

The wheels of the car are separate meshes that roll / turn with respect to the car's

speed and steering

Video Texture

A 3 second 30fps portion of the MudslideMadness video plays on one of the

screens of the tv stand on the map Can best be seen when using the debug

camera (P)

•

•

https://tuwel.tuwien.ac.at/pluginfile.php/4294943/mod_page/content/131/Shadow_mapping_SS19.pdf
https://github.com/SaschaWillems/Vulkan/blob/master/examples/shadowmapping/shadowmapping.cpp
https://tuwel.tuwien.ac.at/pluginfile.php/4294943/mod_page/content/131/GPU_Particles_SS18.pdf

Libraries

ASSIMP is used as a object loader. The logic for object loading can be found in

"loadModel()" in "Geometry.cpp"

JoltPhysics is the physics engine of the game. Implementation can be found in

the src/Jolt folder

https://github.com/assimp/assimp
https://github.com/jrouwe/JoltPhysics

	Mudslide Madness
	Starting the Game
	Current Controls
	Gameplay Features
	3D Geometry
	Playable
	Framerate Independence and min. 60FPS
	Win/Loose Condition
	Controls
	Camera
	Illumination Model
	Textures
	Moving objects
	Adjustable Parameters

	Optional Gameplay Features
	Collision Detection (Basic Physics)
	Advanced Physics
	Heads-Up Display

	Effects
	Shadow Map with PCF
	GPU Particle System using compute shader
	Hierarchical Animation
	Video Texture

	Libraries

