Documentation
Group/Game Name: Grandpa Jones

Brief description of implementation:

The cave system and the first-person character "Grandpa Jones" were created in Blender
and imported into the scene using assimp. The cave system includes integrated light
sources in the form of torches and one oil lamp at the entrance, which contribute to the
overall lighting effects. The man-made entrance and exit area features a brick texture,
chosen for its suitability for normal mapping (entrance) and to emphasize its artificial
character.

The project features the following implemented effects and techniques:

% Advanced Modelling: CPU-based Particle System
% Texturing: Procedural Texture

% Shading: Simple Normal Mapping

% Post Processing: Bloom/Glow Effect

Additional libraries:

* Physx 4.1
* assimp
* freetype

Gameplay:
Mandatory:

* 3D Gameplay:
o Implemented assimp-based loader for COLLADA (.dae) files
o contains complex cave system geometry with >10k polygons
% Playable:

o Gameplay mechanics include timed objective (reach exit with two collected
keyes before time expires), physics-based character movement, interactive
environment with collision detection

o Executable builds with proper asset packaging

% Min 60 FPS and Framerate Independence:

o Achieved through delta-time calculation for movement/physics and timer,
batch rendering of static geometry and a bloom effect that uses two-pass
Gaussian blur

% Win/Lose Condition:

o Countdown timer displayed in the top center

o Victory condition: collect two keyes and reach cave exit before timer expires

o Loss condition: timer expiration

% Intuitive controls:
o WASD for continuous movement



Space for jump (event callback)
Mouse look
F1 to toggle debug camera

o M to display a map of the cave system
% Intuitive Camera:

o Primary first-person camera locked to player

o Secondary debug camera with free movement
% lllumination model:

o Phong lighting with multiple point lights (torches) and material parameters for

ambient, diffuse, and specular reflection

* Textures:

o Mipmapped textures with trilinear filtering

o Special implementation:

m Brick texture with normal map at entrance
m Procedural cave wall texture using FBM noise

% Moving Objects:

o Physics-driven player movement

o Dynamic particle system with 500+particles
% Documentation:

o Hereitis:)
% Adjustable Parameters:

o Parameters can be adjusted using the ini-File under \assets\settings.
Screen Resolution (Width/Height) and Fullscreen-Mode (On/Off) are found in
window_jones.ini.

o O O

Optional:

% Collision Detection (Basic Physics):

o The game uses PhysX for robust collision detection between the player and
the static cave environment, ensuring the player cannot walk through walls or
geometry

% Heads-up Display:

o A 2D HUD overlay displays a countdown timer, implemented using FreeType
text rendering and blending.

A 2D map of the cave can be displayed and hidden by tapping M.

Effects:
Lighting:

% Lighting: Lightmap using Separate Textures
We plan to introduce baked lightmap textures for the entrance area to reduce load,
but we didn’t manage to complete until the submission date.

Advanced Modelling:

% CPU Particle System:
The game has a particle system for showing flames on the torches on the cave walls
and also in the player's hand. For this to work we need a base quad that represents



all our particles in the system. We therefore introduced two new shaders that take the
instance's position and color. The particles have a randomized starting point around a
point on the torch and randomized lifespan. They are also always facing the camera.

https://www.opengl-tutorial.org/intermediate-tutorials/billboards-particles/particles-inst

ancing/

Animation: -
Texturing:

% Procedural Texture:
To visually enhance the cave system, we use a procedural shader based on gradient
noise, which generates a rock-like texture for the terrain.

Shading:

% Simple Normal Mapping:
Simple Normal Mapping is implemented by altering the surface normal using a
normal map texture. The normal map is sampled with UV coordinates aligned to the
surface, without tangent space transformation, making it suitable for axis-aligned
surfaces like quads and boxes. This effect is visible in the entrance area with a brick
texture. The effect can be toggled on or off pressing N during runtime.

https://www.rastertek.com/gl4linuxtut20.htm|
https://learnopengl.com/Advanced-Lighting/Normal-Mapping

Advanced Data Structures: -
Post Processing:

% Bloom/Glow:
The Bloom effect is implemented as a post-processing step: bright areas of the
rendered scene are extracted, blurred using a two-pass Gaussian blur and then
added back onto the original scene. This creates a soft glow around bright light
sources such as torches and the oil lamp in the entrance area. The strength of the
effect is primarily controlled by the exposure parameter, which can be adjusted at
runtime. The overall intensity factor for bloom is fixed in the shader code.
https://learn ngl.com/Advanced-Lighting/Bloom

https://www.rastergrid.com/blog/2010/09/efficient-gaussian-blur-with-linear-sampling/
https://kalogirou.net/2006/05/20/how-to-do-good-bloom-for-hdr-rendering/

Other special features:

The game presents a sleek start menu featuring two clear options: "Play" to dive into the
adventure, and "Quit" to exit gracefully. Should the timer expire, players are greeted with a
Lose screen that offers a straightforward button to return to the main menu, (offering the
option to Play or Quit again). Similarly, upon victory, a Win screen provides the same
seamless option to navigate back to the menu.


https://www.opengl-tutorial.org/intermediate-tutorials/billboards-particles/particles-instancing/
https://www.opengl-tutorial.org/intermediate-tutorials/billboards-particles/particles-instancing/
https://www.rastertek.com/gl4linuxtut20.html
https://learnopengl.com/Advanced-Lighting/Normal-Mapping
https://eliemichel.github.io/LearnWebGPU/basic-3d-rendering/lighting-and-material/normal-mapping.html
https://eliemichel.github.io/LearnWebGPU/basic-3d-rendering/lighting-and-material/normal-mapping.html
https://learnopengl.com/Advanced-Lighting/Bloom
https://www.rastergrid.com/blog/2010/09/efficient-gaussian-blur-with-linear-sampling/
https://kalogirou.net/2006/05/20/how-to-do-good-bloom-for-hdr-rendering/

While the current menu setup focuses on simplicity without adjustable settings, future
updates could introduce customizable options to enhance player experience.

Walk-through:

Upon starting the game, players are greeted by the main menu, where they can choose to

begin their adventure as Grandpa Jones. Once the game starts, players find themselves at
the man-made brick entrance of a mysterious cave, illuminated by flickering torches and an
oil lamp standing on some sort of trunk? But there's no time to lose!

The cave is already shaking, and you have to find two keys and the exit in time if you don't
want to make the cave your grave...

Using classic first-person controls (WASD to move, mouse to look around, space to jump),
players explore the atmospheric cave environment. The walls are adorned with procedural
textures, and the path is lit by glowing torches, each accompanied by dynamic particle
effects that add to the immersive atmosphere.

As time ticks away, players must stay alert and avoid getting lost in the labyrinthine
passages. A hand-drawn map of the cave serves as their only guide.

If they reach the exit in time, a Win screen celebrates their success and offers a chance to
play again. If the timer expires, a Lose screen appears, allowing them to return to the main
menu and try once more.

Throughout the experience, visual effects such as bloom and normal mapping enhance the
sense of depth and realism, making each run through the cave a visually engaging
adventure.



