Documentation

Group/Game Name: Bake the Cake!

Brief description of implementation:

Players control Red Riding Hood using WASD for movement and Spacebar to jump, navigating
a small forest level containing trees, mushrooms, and collectible fruits. Approaching fruits
automatically collects them. A timer tracks gameplay duration, and clearly defined win/lose
conditions are included. An intuitive third-person camera smoothly follows Red Riding Hood.
The cursor is hidden during gameplay but becomes visible when accessing the menu.

Additional libraries:

+ GLFW 3.3.x — Window & Input (https://www.glfw.org)

+ GLEW 2.2.x - OpenGL-Function Pointer management (https://github.com/nigels-com/glew)
+ GLM 0.9.9.x — Maths (https://github.com/g-truc/gim)

+ stb_image.h — Texture Loading (https://github.com/nothings/stb)

+ Bullet Physics 3.24 — Physics & Collision Detection (https://github.com/bulletphysics/bullet3)
+ INIReader 1.5 — Configuration Parser (https://github.com/jtilly/inih)

+ Assimp 5.4.3 — Asset Importer Libraryhttps://github.com/assimp/assimp

Gameplay:

Mandatory:

3D Geometry: 3D Geometry (6 points): External OBJ models loaded via Assimp
instead of primitives

Playable: Fully playable with movement, timer, and collection mechanics
Advanced Gameplay: Gameplay complexity increased through timer, collectible
mechanics, and structured level design

Min 60 FPS and Framerate Independence: Movement adapted to deltaTime
Win/Lose Condition: Time limit and collected fruits define win/lose scenario
Intuitive controls: Movement with WASD, jump with Spacebar, continuous input
handling, and GLFW callbacks

Intuitive Camera: Smooth third-person camera with orbit and follow functionality
lllumination model: Implemented lighting model with light sources, materials,
and normals

Textures: Textured assets throughout the level

Moving Objects: Red Riding Hood moves around the level

Documentation:

Adjustable Parameters: Screen resolution and fullscreen mode adjustable

Optional:

Collision Detection (Basic Physics): Red Riding Hood collides with trees; fruit
collisions are correctly detected

Advanced Physics: Collision trigger reduces berry count and removes collected
fruits

https://github.com/jtilly/inih

e Scripting Language Integration: x
e View-Frustum Culling: x
e Heads-up Display: HUD overlay displays relevant information

Effects:
Lighting:
e Lightmap using Separate Textures: x
e Lightmap using In-Game Calculation: x
e Shadow Map with PCF: x
e Shadow Volumes: x
Advanced Modelling:
CPU Particle System: x
GPU Particle System using Transform Feedback: x
GPU Particle System using Compute Shader: x
L-System: Used to generate and render bushes procedurally
Blobby Object Using Marching Cubes: x
e Subdivision Surface: x
Terrain:
e Tessellation from Height Map: x
e Voxel Terrain using an Octree: x
Animation:
e Hierarchical Animation: x
e Vertex Shader Animation: Vertex shader animates water surface with wave
simulation
e GPU Vertex Skinning: x
Texturing:
e Procedural Texture: x
e Video Texture: x
e Specular Map: x
e Environment Map: Reflection simulation on water surface using cube map
Shading:
e Simple Normal Mapping: x
e Cel Shading: x
e Style Transfer: x
e Brush Strokes: x
e Physically Based Shading: x
Advanced Data Structures:
e BSP Tree: x
e kd-Tree: x
e LOD using an octree: x
Post Processing:
e Bloom/Glow: Fruits exhibit glowing bloom effect
e Lens Flares: x
e Contours via Backfaces: x

e Contours via Edge Detection: x

Other special features:
Keybindings:
+ WI/A/S/D = Forward / Left / Backward / Right
* Space = Jump
+ ESC = Exit
* F1/F2/N/T = Debug modes
* F =Toggle fullscreen

Walk-through:
* Navigate to bin/ and start the game with ./GCGProject_GL.
* The game launches in 1280x768 resolution at = 60 FPS.
* Red Riding Hood starts at position (0, 0, 0) on the ground plane, camera at (0, 2, 10).
* Move using WASD and jump with Space.
+ Collect fruits in the forest and keep an eye on the timer.

