
Anemoi - Implementation documentation 
 

 

Implemented feature Short description, additional details, 
programming tricks, special features, 
additional libraries 

Intuitive Camera DebugCamera and 3rdPersonCamera both inherit 
from Camera. The original Camera class was not 
used, a new custom Camera was created. Both 
cameras are switchable by pressing ‘1’, 
DebugCamera can freely fly and move. 3rdP-Cam 
is fixed and has lookat set on Player, but up is fixed 
to worlds up for better gameplay. 

Min. 60 FPS and Framerate 
Independence 

All time-based input/updates use deltatime. 
Currently max FPS are not capped by the game 
and FPS are visible in the Games corner. Game 
can be played with constant 144FPS on FullHD. 

Intuitive controls Input is implemented via polling or callback, 
depending on the type: 
WASD/Arrow Keys = Control Player 
Space = Start game: start movement and timer, 
pause game, restart game 
, = volume down 
. = volume up 
Esc = Close Window 
Enter = Fullscreen 
F1 = Unchanged 
H = toggle HUD during runtime 
 
Controls that will be disabled for the final game, 
but are implemented: 
1 = Switch between Player- and DebugCam 
WASD = Control DebugCam 
M = Move DebugCam 
 

Collision Detection (Basic 
Physics) 
 

Each GameObject has a CollisionShape  and 
Object which is automatically created with the 
Geometries Maxs. Terrain consists of two 
CollisionShapes, a boxShape and a 
TriangleMeshShape in the form of a cylinder, so 
that Collision is detected in the ‘frame’ of the hollow 
tube and not inside the cylinder. CollisionDetection 
between the Player and each GameObject 
Subtype: 
Goal = Win 
Ground = Crash (Lose) 
Collectable = Collected, deleted, count++ 
This feature is implemented with Bullet. 

(Moving) Objects Objects are implemented as GameObjects(classes 
that inherit from ‘GameObject’), each with its own 

https://pybullet.org/wordpress/


 

automatically created custom CollisionBody. 
 
The Player moves with a constant speed in the 
direction of its front-vector, it can be sped up by 
pressing the Boost-Button (B). The orientation is 
changed with KeyInput (WASD/ArrowKeys). The 
camera follows the Player with a fixed lookat. The 
PlayerModel was made via a locally run version of 
Hunyuan and a picture of Icarus. The glb was then 
added via our ‘ModelLoader’, with the help of 
assimp. 
 
The collectables are randomly generated and 
move constantly at a set amplitude and speed. The 
spacing is set at every new Game randomly, with 
hot spots where more rings appear. They can be 
collected by the Player and are deleted at collision. 
The Collectables gloom and their geometry is made 
with the custom made method ‘​
‘createRingGeometry’. 
 
The goal is static, made and loaded the same way 
as the PlayerModel and their collision is the win 
condition. 

Adjustable Parameters The initial Screen Resolution is set with the 
window.ini file. Fullscreen can be toggled via Enter. 

Illumination Model one lightsource: direction light 
all Objects have a material or texture normals are 
calculated for each game object 

Win/Lose Condition Win = Reach Goal within Time 
Lose = Crash into Ground  || Time is up 
Bonus = Number of collectables 

3D Geometry The Player and Goal Models were made via a 
locally run version of Hunyuan and a picture of 
Icarus. The glb was then added via our 
‘ModelLoader’, with the help of assimp. The 
ModelLoader uses a given glb and default Material 
to go through each mesh and create a Geometry 
with a fitting ObjectType. 
The Collectables are simple shapes created via the 
Geometry class. The sphere to reflect the cubemap 
is created by simple geometry as well. The particles 
from the particle system use the same geometry 
scaled differently. 

Bloom/Glow The bloom effect is applied to each collectable 
using two framebuffers. The first contains the 
normal scene and the second contains only the 
objects lit with alpha = 1. A shader blurs the bright 
objects. After that the scenes are blended together 

https://github.com/YanWenKun/Hunyuan3D-2-WinPortable/tree/main
https://github.com/assimp
https://github.com/YanWenKun/Hunyuan3D-2-WinPortable/tree/main
https://github.com/assimp


 

creating the glow effect. 

Heads-Up Display Current Player score, Timer and FPS are displayed 
using a Heads-Up Display. Also winning and losing 
are indicated with a banner. There is also a Tutorial 
display viewed at the start of the game and a 
countdown runs after starting it. Pause and 
information on how the game can be restarted is 
also viewed with the hud. 
We blend a 2D scene over the 3D scene in front of 
the current camera. To view letters and numbers 
we used a bitmap. The bitmap was uploaded using 
the library stb_image. For each symbol in the 
bitmap the uv coordinate is calculated and mapped 
to the corresponding char in a string given. The 
shader used only renders the alpha = 1 parts of the 
bitmap creating the blend in our scene.  

Playable The exe opens a window in which the game can be 
started via ‘Space’. The Player movement and 
timer starts after the countdown 3-2-1. The User 
has to collect as many Rings as possible without 
crashing into the ground and the goal needs to be 
reached before the time runs out. Each possible 
ending shows its own end-screen and sound. The 
game can be restarted. 

Documentation This file, a well structured Git with Issues and 
object oriented code with comments. 

Environment Map Environment / Skybox implemented as a cubemap. 
It is reflected on the sphere placed inside the goal. 
The cubemap uses pictures loaded by the 
stb_image library. The pictures are mapped to the 
insides of a cube geometry and rendered first in the 
Scene Framebuffer Object. 

Vertex Shader Animation Water-vertexShader is added and normal 
Texture-fragShader is changed to work with it as 
well. VertexShader generates multiple waves and 
‘ripples’ with given input data (amplitude, 
frequency,..) and combines them to one output = 
result_wave.​
WaterMaterial is a child of TextureMaterial and uses 
these Shaders. Water is then created as an 
obstacle. 

Particle System The CPU particle system simulates sparkles inside 
the goal coming from the reflection sphere using a 
pool of particles that are updated on the CPU. Each 
particle stores its own position, velocity, size, color 
and remaining life time. Dead particles are recycled 
using a respawn function that reinitializes their 
data. The particles are updated every frame, 

https://github.com/nothings/stb/blob/master/stb_image.h
https://github.com/nothings/stb/blob/master/stb_image.h


 

 

moving them and fading their alpha based on life 
time. After the update, position and color data are 
uploaded to the GPU into a dynamic buffer. 
Rendering is done via instanced drawing using a 
low-poly sphere and two per-instance attributes: 
position + size, and color. 

Textures Textures are generated in the Texture-class with 
dds-files which were generated from free online 
jpg-textures, LVA-webpage and local 
Hunyuan3D-version. Textures are afterwards used 
to create different kinds of Materials. 

Tessellation from Heightmap The Tessellation-Shaders are implemented and 
Terrain-class added. Tessellation part does not 
work atm because the given function 
Shader::loadShader throws errors at 
vertexShaderLoading, but a Heightmap is read with 
the Array2D-class and displayed as Terrain/Ground 
in-game. 

Music and Sounds Irrklang is used for in-game sounds and music. A 
sound-class was made and handles the different 
sounds that are made by winning, clashing, 
collecting and when running out of time.​
Once the game starts, music starts playing which 
volume can be controlled by pressing , for 
volume-down and . for volume up. 

Advanced Gameplay We have integrated music & sounds to allow the 
player to experience the game with different 
senses. There is also a Tutorial HUD explaining the 
user input. When the game is finished you can 
restart it by pressing space. You can also always 
pause the game during runtime, also with the space 
key. The spacing of the collectables is random for 
every game to create a new game experience 
every time. 

https://github.com/jonas2602/irrKlang

