Anemoi - Implementation documentation

Implemented feature

Short description, additional details,
programming tricks, special features,
additional libraries

Intuitive Camera

DebugCamera and 3rdPersonCamera both inherit
from Camera. The original Camera class was not
used, a new custom Camera was created. Both
cameras are switchable by pressing ‘1’,
DebugCamera can freely fly and move. 3rdP-Cam
is fixed and has lookat set on Player, but up is fixed
to worlds up for better gameplay.

Min. 60 FPS and Framerate
Independence

All time-based input/updates use deltatime.

Currently max FPS are not capped by the game
and FPS are visible in the Games corner. Game
can be played with constant 144FPS on FullHD.

Intuitive controls

Input is implemented via polling or callback,
depending on the type:

WASD/Arrow Keys = Control Player

Space = Start game: start movement and timer,
pause game, restart game

, = volume down

. = volume up

Esc = Close Window

Enter = Fullscreen

F1 = Unchanged

H = toggle HUD during runtime

Controls that will be disabled for the final game,
but are implemented:

1 = Switch between Player- and DebugCam

WASD = Control DebugCam

M = Move DebugCam

Collision Detection (Basic
Physics)

Each GameObject has a CollisionShape and
Object which is automatically created with the
Geometries Maxs. Terrain consists of two
CollisionShapes, a boxShape and a
TriangleMeshShape in the form of a cylinder, so
that Collision is detected in the ‘frame’ of the hollow
tube and not inside the cylinder. CollisionDetection
between the Player and each GameObiject
Subtype:

Goal = Win

Ground = Crash (Lose)

Collectable = Collected, deleted, count++

This feature is implemented with Bullet.

(Moving) Objects

Objects are implemented as GameObjects(classes
that inherit from ‘GameObiject’), each with its own

https://pybullet.org/wordpress/

automatically created custom CollisionBody.

The Player moves with a constant speed in the
direction of its front-vector, it can be sped up by
pressing the Boost-Button (B). The orientation is
changed with Keylnput (WASD/ArrowKeys). The
camera follows the Player with a fixed lookat. The
PlayerModel was made via a locally run version of
Hunyuan and a picture of Icarus. The glb was then
added via our ‘ModelLoader’, with the help of

assimp.

The collectables are randomly generated and
move constantly at a set amplitude and speed. The
spacing is set at every new Game randomly, with
hot spots where more rings appear. They can be
collected by the Player and are deleted at collision.
The Collectables gloom and their geometry is made
with the custom made method °
‘createRingGeometry’.

The goal is static, made and loaded the same way
as the PlayerModel and their collision is the win
condition.

Adjustable Parameters

The initial Screen Resolution is set with the
window.ini file. Fullscreen can be toggled via Enter.

lHlumination Model

one lightsource: direction light
all Objects have a material or texture normals are
calculated for each game object

Win/Lose Condition Win = Reach Goal within Time
Lose = Crash into Ground || Time is up
Bonus = Number of collectables

3D Geometry The Player and Goal Models were made via a

locally run version of Hunyuan and a picture of
Icarus. The glb was then added via our
‘ModelLoader’, with the help of assimp. The
ModelLoader uses a given glb and default Material
to go through each mesh and create a Geometry
with a fitting ObjectType.

The Collectables are simple shapes created via the
Geometry class. The sphere to reflect the cubemap
is created by simple geometry as well. The particles
from the particle system use the same geometry
scaled differently.

Bloom/Glow

The bloom effect is applied to each collectable
using two framebuffers. The first contains the
normal scene and the second contains only the
objects lit with alpha = 1. A shader blurs the bright
objects. After that the scenes are blended together

https://github.com/YanWenKun/Hunyuan3D-2-WinPortable/tree/main
https://github.com/assimp
https://github.com/YanWenKun/Hunyuan3D-2-WinPortable/tree/main
https://github.com/assimp

creating the glow effect.

Heads-Up Display

Current Player score, Timer and FPS are displayed
using a Heads-Up Display. Also winning and losing
are indicated with a banner. There is also a Tutorial
display viewed at the start of the game and a
countdown runs after starting it. Pause and
information on how the game can be restarted is
also viewed with the hud.

We blend a 2D scene over the 3D scene in front of
the current camera. To view letters and numbers
we used a bitmap. The bitmap was uploaded using
the library stb_image. For each symbol in the
bitmap the uv coordinate is calculated and mapped
to the corresponding char in a string given. The
shader used only renders the alpha = 1 parts of the
bitmap creating the blend in our scene.

Playable

The exe opens a window in which the game can be
started via ‘Space’. The Player movement and
timer starts after the countdown 3-2-1. The User
has to collect as many Rings as possible without
crashing into the ground and the goal needs to be
reached before the time runs out. Each possible
ending shows its own end-screen and sound. The
game can be restarted.

Documentation

This file, a well structured Git with Issues and
object oriented code with comments.

Environment Map

Environment / Skybox implemented as a cubemap.
It is reflected on the sphere placed inside the goal.
The cubemap uses pictures loaded by the
stb_image library. The pictures are mapped to the
insides of a cube geometry and rendered first in the
Scene Framebuffer Object.

Vertex Shader Animation

Water-vertexShader is added and normal
Texture-fragShader is changed to work with it as
well. VertexShader generates multiple waves and
‘ripples’ with given input data (amplitude,
frequency,..) and combines them to one output =
result_wave.

WaterMaterial is a child of TextureMaterial and uses
these Shaders. Water is then created as an
obstacle.

Particle System

The CPU particle system simulates sparkles inside
the goal coming from the reflection sphere using a
pool of particles that are updated on the CPU. Each
particle stores its own position, velocity, size, color
and remaining life time. Dead particles are recycled
using a respawn function that reinitializes their
data. The particles are updated every frame,

https://github.com/nothings/stb/blob/master/stb_image.h
https://github.com/nothings/stb/blob/master/stb_image.h

moving them and fading their alpha based on life
time. After the update, position and color data are
uploaded to the GPU into a dynamic buffer.
Rendering is done via instanced drawing using a
low-poly sphere and two per-instance attributes:
position + size, and color.

Textures

Textures are generated in the Texture-class with
dds-files which were generated from free online
jpg-textures, LVA-webpage and local
Hunyuan3D-version. Textures are afterwards used
to create different kinds of Materials.

Tessellation from Heightmap

The Tessellation-Shaders are implemented and
Terrain-class added. Tessellation part does not
work atm because the given function
Shader::loadShader throws errors at
vertexShaderlLoading, but a Heightmap is read with
the Array2D-class and displayed as Terrain/Ground
in-game.

Music and Sounds

Irrklang is used for in-game sounds and music. A
sound-class was made and handles the different
sounds that are made by winning, clashing,
collecting and when running out of time.

Once the game starts, music starts playing which
volume can be controlled by pressing , for
volume-down and . for volume up.

Advanced Gameplay

We have integrated music & sounds to allow the
player to experience the game with different
senses. There is also a Tutorial HUD explaining the
user input. When the game is finished you can
restart it by pressing space. You can also always
pause the game during runtime, also with the space
key. The spacing of the collectables is random for
every game to create a new game experience
every time.

https://github.com/jonas2602/irrKlang

