Advanced Topics in Virtual Reality

Calibration and Registration

To produce a working 3D viewing and interaction experience, one has to calibrate all devices and register them to reality.

Calibration:
- mapping tracker to real world position
- mapping HMD to real world view

Registration:
- for the set-up to work, all devices have to be „registered“ to each other in the same coordinate system
Calibration

Determine & correct non-linearities and scale factors, e.g.:

- distortions of optics in a HMD:
- distortions of magnetic tracker:

Calibration

mapping of image to projection screen::
Registration

registration parameters for a projection set-up

Correct Stereoscopy

The stereoscopic effect depends heavily on the correct projection of left and right image.

Example: rendering for stereoscopic projection

Wrong:
offset or tilt

Correct:
off-axis projection
Correct Stereoscopy

A general camera model is necessary, where view plane and eye-point with viewing direction can be defined independently.
This is NOT generally possible in most render packages and OpenGL cameras!
VR setups

Categories:
- Immersive / Augmented (Mixed)
- Single / Multi user
- Local / Distributed
Immersive vs. Augmented setups

Immersive setup
- user sees only simulation
- pro:
 - whole visible world can be manipulated
 - less registration problems
- contra:
 - possible: disorientation & claustrophobia
 - collisions w/reality
 - whole environment must be generated
 (real objects too \(\Rightarrow\) real collisions!)

Augmented (Mixed) setup
- user sees real & virtual environment
- pro:
 - only virtual objects have to be displayed
 - social interaction possible
 - objects outside the simulation are visible
 (cars, other people, doors, etc.)
- contra:
 - registration between real & virtual world tricky
 (misregistration very visible)
 - navigation metaphors reduced
The CAVE
(“CAVE Automatic Virtual Environment”)

The “CAVE” consists of 3 to 6 back-projection screens. These screens form (parts of) a cubical room in which the user has a large view of the VE.

A CAVE user
- wears Shutter- or Pol-glasses
- has to be head-tracked
- uses a tracked input device
The CAVE – back projection

mirrors

projectors

screens
(semi-transparent)

Illustration by Minh Phuong
Electronics Visualization Laboratory University of Illinois at Chicago

The CAVE – front projection
The CAVE – front vs. back projection

<table>
<thead>
<tr>
<th></th>
<th>Back</th>
<th>front</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space requirements</td>
<td>Larger than working volume</td>
<td>Working volume</td>
</tr>
<tr>
<td>Screen</td>
<td>Expensive, special corners</td>
<td>White wall</td>
</tr>
<tr>
<td>Vignetting</td>
<td>Extensive</td>
<td>Not noticeable</td>
</tr>
<tr>
<td>Shadows</td>
<td>None</td>
<td>When standing close</td>
</tr>
<tr>
<td>Polarization</td>
<td>Possible, but mediocre</td>
<td>Not really possible</td>
</tr>
<tr>
<td>Top & bottom projection</td>
<td>Possible</td>
<td>Not possible</td>
</tr>
</tbody>
</table>

The CAVE

Images for the CAVE have to be calculated depending on the users and screens position.
From the wrong position, the images look like this:
The CAVE

The FLYCAVE
The FLYCAVE - display
The FLYCAVE – rendering

- Virtual world
 - arbitrary scene rendered with OpenSceneGraph
 - user input (e.g., movement and interaction)
 - orthographic projection
- Calenmap
 - six degrees of freedom
 - view direction
 - defined in local frame
- Geometry texture
 - generated by projecting calenmap onto
 - 3D model of display rather than local frame
- Display view
 - created by binding tapl frame geometry
 - view direction
 - defined in local frame

3D pose of observer
- defined in local frame

The FLYCAVE – tethered version

Three images are projected via mirrors on a small, translucent ball

Inside the ball, a fly is anchored

The amplitudes of the fly's wings give its intended direction
The FLYCAVE – tethered version

The FLYCAVE – confinement results
Studierstube

“Studierstube” is a multi-user local VE. It uses see-through HMDs to let users share a common augmented workspace.

The main interface is the “Personal Interaction Panel” a pad and pen combination. The pad is augmented with 2D and 3D widgets, which can be manipulated by the pen.
Studierstube (video)

Using sliders on the PIP to parameterize the AVS network

Studierstube (video)

Two-User Interaction
Studierstube (video)

Select your viewpoint by simply moving your head around....

ARAS – augmented reality aided surgery

Polygons, vessel tree, vessel tree transformation, Anotation markers

Radiologist's Workstation

Surgeon's video camera

Surgeon's Workstation

Ultrasound Device

Tracker Server

Position and Orientation of all tracked devices:
- Surgeon’s head tracker
- Patient tracker
- US-probe tracker

© 2012 A.L. Fuhrmann

[Fuhrmann2002]
ARAS – augmented reality aided surgery

[Fuhrmann2002]
Spherical Projection Setups

Non-planar screens – mostly spherical – screens used when large FoV is important.

E.g. architectural walkthroughs or car- or flight-simulators:

Motion Simulators

(hemi-)spherical projection in combination with a motion platform delivers an extremely immersive experience:

e.g.: military helicopter simulation
Blue-C

Developed @ ETH Zürich (Markus Gross & Oliver Staadt)
The blue-c system combines the CAVE with real-time image capture and 3D video

http://blue-c.ethz.ch/
The blue-c system includes:

- a fully immersive three-dimensional stereo projection theatre
- real-time acquisition of multiple video streams
- three-dimensional human inlays reconstructed from video images
- voice and spatial sound rendering
- distributed computing architectures for real-time image processing and rendering
- a flexible communication layer adapting to network performance
- a scalable hard- and software architecture for both fixed and mobile installations
Blue-C

Back-projection screens can be switched to transparent → cameras from outside CAVE can grab images → 3D reconstruction of user possible

Blue-C

Capturing the user from a lot of cameras surrounding the system allows to reconstruct a 3D model, which can be rendered from different angles
Blue-C

By using an additional phase, where both shutters of the glasses are opaque, the capturing can be performed invisible to the user:

<table>
<thead>
<tr>
<th></th>
<th>stereo right</th>
<th>picture acquisition</th>
<th>stereo left</th>
<th>picture acquisition</th>
</tr>
</thead>
<tbody>
<tr>
<td>active projection screen</td>
<td>trans.</td>
<td>0 ms</td>
<td>trans.</td>
<td>0 ms</td>
</tr>
<tr>
<td>LED illumination</td>
<td>on</td>
<td>4 ms</td>
<td>on</td>
<td>4 ms</td>
</tr>
<tr>
<td>camera</td>
<td>on</td>
<td>8 ms</td>
<td>on</td>
<td>8 ms</td>
</tr>
<tr>
<td>right eye shutter glass</td>
<td>opaque</td>
<td>12 ms</td>
<td>opaque</td>
<td>12 ms</td>
</tr>
<tr>
<td>left eye shutter glass</td>
<td>opaque</td>
<td>16 ms</td>
<td>opaque</td>
<td>16 ms</td>
</tr>
<tr>
<td>right projector shutter</td>
<td>opaque</td>
<td>20 ms</td>
<td>opaque</td>
<td>20 ms</td>
</tr>
<tr>
<td>left projector shutter</td>
<td>opaque</td>
<td>24 ms</td>
<td>opaque</td>
<td>24 ms</td>
</tr>
</tbody>
</table>

Background subtraction segments the image into user and background:

![Background subtraction example](image1.png)
Blue-C

Many images & silhouettes from different viewpoint deliver 3D point stream:

Blue-C

3D holographic telephony, system setup:
Motion Simulators

Motion platforms can be used to simulate acceleration. Because humans do not recognize slow changes in acceleration, and because the gravity-vector can be used as substitute for ongoing accelerations (e.g. tilting), a relatively small range of motions is sufficient.
VirtuSphere

- Implements „walking“ in VR
- gigantic „Trackball“
- user inside
- moves in all direction
- ultrasound sensors deliver XY

Advantages
- no physical constraints of (planar) movement

Disadvantages
- high inertia → movement difficult
- accident prone setup
- tracking & display has to be wireless or self-contained (mobile VR)
Virtuix Omni

Low-friction shoes!

Virtuix Omni

Socks!
CyberCarpet

- Implements „walking“ in VR
- omni-directional treadmill
- conveyor belt built from conveyor belts turned 90°

CyberCarpet (movie)
Infinadeck

End of Lecture

Evaluation:

- DO NOT FORGET TO EVALUATE!
- Den verwendeten Fragebogen können Sie über TUWIS++ http://tuwis.tuwien.ac.at/ (Benutzername: Ihr Nachname; Passwort: Ihr persönliches TU-Passwort) abrufen.

LVA-NR. Typ Fragebogen Modus Bewertungszeitraum

--
186.156 VU VO e SS 2012
End of Lecture

Lab-Project:
- 1-2 students per group
- max. 3 months
- work@home or VRVis
- own or given themes

Examn
- this semester (as early as possible)