Augmented Reality in the Psychomotor Phase of a Procedural Task

Authors: Steven J. Henderson and Steven K. Feiner
(Columbia University)

Presentation for “Current Research in Augmented and Virtual Reality”

Prof. Henry Fuchs

By: Mohammadreza Mirzaei
mohammad.mirzaei@tuwien.ac.at

Winter 2017
Procedural Tasks

Involve People Performing Established Sequences of Activities, while Interacting with Objects in the Physical Environment, to Accomplish Specific Goals [1].

In the Psychomotor Phase (or Workpiece Phase), the User Performs Physical Manipulations, Including Comparing, Aligning, and Adjusting Configurations of Components [2].

The Psychomotor Phase is Complemented by the Informational or Cognitive phase.

Augmented Reality (AR)

Combining Interactive Media, such as Graphics, with our Perception of the Real World in Real Time [1].

Applying AR to Psychomotor Phase of a Manufacturing and Maintenance Task

☑ Present a Research Prototype that:

1. Tracks Multiple Independent Physical Domain Objects and the User’s Head Relative to the World.
2. Provide an AR User Interface that Offers Dynamic, Prescriptive Feedback and Instructions.
3. Validated with a Formal User Study.

RELATED WORK

S. Henderson and S. Feiner [1]
AR Prototype Assist with Maintenance Activities Inside an Armored Personnel Turret.
Show the Benefits of AR Assistance in the Informational Phase and NOT in the Psychomotor Phase.

D. Reiners, et al. [2]

B. Schwerdtfeger, et al. [3]

A. Tang, et al. [5]

Realistic Maintenance Domain: Rolls-Royce Dart 510 Turboprop Engine
Disassembly, Re-Assembly, Installation, and Removal of the Dart Engine’s Combustion Chamber

SOFTWARE
Goblin XNA
https://goblinxna.codeplex.com/
Includes Two Assistance Phases

HARDWARE
NVIS nVisor ST60 Head-Worn Display (HWD), OptiTrack FLEX IR Cameras, Firefly MV IEEE Camera, and etc.

AR ASSISTANCE
Virtual Labels, Arrows, Help and Error Messages with Different Colors, Alignments, and etc.
Informational Phase Assistance

1. 2D Text in a Screen-Fixed Head-Up Display (HUD).
2. A Screen-Fixed Arrow to Orient the User in the General Direction of the Target Task.

Psychomotor Phase Assistance

1. Dynamic 3D Arrow.
2. Dynamic 3D Highlights for Connection Points.
3. Dynamic Billboarded Labels.

Software

Goblin XNA
PROTOTYPE

HARDWARE

HWD: NVIS nVisor ST60
IR Cameras: NaturalPoint OptiTrack FLEX V100(R2)
VGA Camera: Point Grey Firefly MV IEEE 1394a
Graphic Card: ATI Radeon HD 5770 (1 GB DDR3/5)
CPU: Quad-Core 3.4GHz AMD Phenom II 965
RAM: 8 GB
OS: Windows 7 64-bit

- The 3D Position and Orientation of the HWD (with 3 Retroreflective Sphere Markers), Cones, and Cans (each One with 4 Markers) are Optically Tracked Using a Cluster of 11 OptiTrack FLEX IR Cameras [1], Mounted Around the Work Area.
- Using Printed Fiducial Markers and VTT ALVAR Optical Tracking Library [2] to Track Large Objects Held in the User’s Hands by a 640x 480 Resolution Point Grey Firefly MV IEEE 1394a Camera [3] that Attached to the HWD.
- Calibrate the AR Application and the HWD (Using 10cm x 10cm Patterned Target) by the OptiTrack, and the Camera for Fiducial Marker Tracking. The User is Requested to Align the Real Target with a Series of Virtual Targets, Projected at Eight 3D Locations Per Eye.

PROTOTYPE

AR ASSISTANCE

01 Display Text Instructions in the 2D HUD of the HWD.

02 Guide the User to the Can’s Current Location.

03 Provide Virtual Labels to Help the User Identify the Can and Other Objects in the Environment.

04 Display a Dynamic 3D Curved Arrow to bring the Cone and Can into the Desired Alignment and then Secures the Alignment with a Set of Pins.
USER STUDY

AR Condition
Display 3D Graphics-Based Documentation on HWD.

Control Condition (LCD)
Display 3D Graphics-Based Documentation on a 22” Diagonal 1920x1080 LCD.
USER STUDY

Experiment Design

01

Table 1: Steps of combustion chamber assembly task.

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
<th>Activity Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Locate Can X in Bin W</td>
<td>Locate</td>
</tr>
<tr>
<td>2</td>
<td>Move Can X to Turntable</td>
<td>Position</td>
</tr>
<tr>
<td>3</td>
<td>Locate Cone Y in Bin V</td>
<td>Locate</td>
</tr>
<tr>
<td>4</td>
<td>Place Cone Y on Can X</td>
<td>Position</td>
</tr>
<tr>
<td>5</td>
<td>Align Cone Y with Can X, Insert pins</td>
<td>Align</td>
</tr>
<tr>
<td>6</td>
<td>Move assembly XY to Bin Z</td>
<td>Position</td>
</tr>
</tbody>
</table>

2 Blocks: AR Condition, LCD Condition (Five Minute Break Between Blocks)

A Trial: Assembling one of 3 Cones with one of 3 Cans, Aligning the Cone and Can Correctly, and Inserting 2 Pins.
(Completion Time were Logged Automatically)

(Stereo Optical Co. Stereo Fly Test for each Participant)

Pilot Testing

02

6 Participants
(1 female; Ages 18-40)
Recruited by Mass Email to CS Students at University and by Flyers → Paid $15 each

Each Block → 18 Trials
(Changed to 14 Trials)

2 (Display Condition) x 3 (Activity Type)
Measure ANOVA on the Mean Completion Time for each Steps in Table 1 Using an α of 0.05

Significant Main Effect of Display Condition:

Completion Time: $F_{(1,5)} = 17.14, p = 0.009$
Accuracy of Alignment: $F_{(1,5)} = 11.51, p = 0.019$

Very Few Errors During Activities
Strong User Preference for AR vs LCD

Hypotheses & Testing

03

Hypotheses:

1. AR would be the Fastest Condition during the Psychomotor Phase of the Task (Step 5 in Table 1).
2. AR would be the Most Accurate Condition during the Psychomotor Phase of the Task.
3. AR would be the Most Preferred Condition.
4. Participants would Rank the AR Condition as Most Intuitive.

Testing:

22 New Participants
(6 female; Ages 18-44)
14 Trials for each Condition
Completion Time Analysis

Table 2: Pairwise comparisons of mean completion time by activity type.

<table>
<thead>
<tr>
<th>Activity Type</th>
<th>Completion Time (s)</th>
<th>Comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td>Locate</td>
<td>2.66</td>
<td>LCD 0.27 s faster than AR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$t_{(21)} = 1.60, p = 0.124$</td>
</tr>
<tr>
<td>Position</td>
<td>1.15</td>
<td>LCD within 0.01 s of AR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$t_{(21)} = 0.12, p = 0.905$</td>
</tr>
<tr>
<td>Align</td>
<td>24.23</td>
<td>AR 21.31 s faster than LCD</td>
</tr>
<tr>
<td></td>
<td>45.55</td>
<td>$t_{(21)} = 6.27, p < 0.001$</td>
</tr>
</tbody>
</table>

RESULTS

Binary Accuracy Rate:

- AR Condition = 95.3%
- LCD Condition = 61.7%

✓ AR is 0.28 radians *More Accurate* than LCD.

Accuracy Analysis

- AR is 0.28 radians *More Accurate* than LCD.

Binary Accuracy Rate:

- AR Condition = 95.3%
- LCD Condition = 61.7%
✓ AR Rate is Significantly Better than LCD in Terms of Ease of Use, Satisfaction, and Intuitiveness.
The PRINTED Condition:
- Create a Modified Version of the LCD Condition with Printed and Glued Small Physical Labels to All Possible Connection Points on each Can and Cone.

RESULTS

Testing:
8 Additional Participants
(All Male, Ages: 19-27), 14 Trials

Results:

Main Effect on Completion Time:
AR = 7.87 s | PRINTED = 7.29 s.

The Mean Completion Time for Align:
AR = 20.73 s | PRINTED = 19.42 s.

Main Effect on Accuracy:
AR = 0.034 radians | PRINTED: 0.065 radians

Binary Accuracy Rate:
AR = 100% | PRINTED = 96.4%

- Failed to Show Evidence of Significant Main Effect.
- Ease of Use → No Difference.
- Preference for Use and the Most Intuitive → AR
CONCLUSION

Discussion
Future Work
Conclusions

In Summary:
✓ Do Assembly Task more Quickly in AR than LCD.
✓ AR Condition is the Most Preferred and Intuitive Condition, even with a 1.3 kg Bulky HWD!
✓ AR is More Accurate than LCD.
✓ AR is Faster and More Accurate for Psychomotor Phase Activities.

01
There is a Need to Formally Explore the Specific Types of Assistance Provided by AR During Psychomotor Activities.

02
Addressing other Realistic Maintenance and Repair Tasks and Exploring More Complex Psychomotor Activities.

03
Test with other AR Engines, such as The Designers Augmented Reality Toolkit (DART) Engine [1].

Received the ISMAR 2011 Best Science and Technology Student Paper Award

Video Source: https://www.youtube.com/watch?v=2eSlMSJ65Kc