

# Seminar in Scientific Writing 193.052, SS 2024, 2.0h (3 ECTS)

# Stefan Ohrhallinger

Institute of Visual Computing and Human-Centered Technology (E193-02)

**TU Wien** 



#### **Important!**



Register to course in TISS and TUWEL: to get news & updates

These slides will on TUWEL and institute website after this meeting

Official registration: by TISS (first phase of course)

Topics are presented today, assigned tomorrow on TUWEL



#### **Seminar Goals**



Practice selecting, reading and understanding

- Search and select papers relevant to your topic
- Summarize them as a state-of-the-art report
- Prepare a talk about your topic in the seminar

This permits in-depth familiarization with the topic

Less in-depth/specialized than subsequent Master seminar!

If well done → can continue to bachelor or master thesis ...



#### Tasks



- Submit a literature list (chosen with supervisor)
- Attendance of 3 lectures
- Meetings with supervisor: paper selection, discussion of papers, preparing talk slides
- Alternative: compare and evaluate algorithms
- Write a report
- Review a report from a colleague
- Final talk in seminar



#### Literature List



- Analyze recent papers (select with supervisor)
- Study secondary literature to understand topic
- How to find relevant papers:
- SIGGRAPH Proceedings
- Google Scholar: find the right key words
- Survey papers, often-referenced papers
- Submits a list of 10+ papers to TUWEL → official registration



### State-of-the-Art Report (STAR)



- 8 pages per student, must be in English
- Format in the style of a scientific paper
- Use LaTeX template on course website, can use Overleaf
- LaTeX tools and guides also on the website
- Submit the report in PDF format
- Report has to be complete and minimum 8 pages!
- NEW: We will use TurnItIn to automatically check for plagiarism



#### Scientific Review



- You will get a draft of another student to review
- Typical conference review form (Eurographics)
- This helps author to improve the manuscript
- Guides on review writing on course website
- You will receive 2 reviews (student, supervisor)
- Improve final camera-ready report according to reviews



#### Seminar Talk



- Prepare slides in advance, using template
- Each student talks for 15 minutes, in english
- 5 minutes discussion after each talk
- Focus is on overview/comparison of methods
- Present so that other students will understand it
- Active discussion is mandatory and is graded
- Slides presentation in the seminar room



# Grading



- Lecture attendance 5%
- Review: 15%
- Seminar slides+talk: 30%, discussion 5%
- Report: 45% (NEW: 15% for report, 30% for camera-ready report)

• Late submission: 15% off task per day, so no points after 1 week (this also concerns the first report!)



#### **Important Dates**



- 24.03. Latest date you learn whether you passed phase 1
- 01.04. 23:59 Submit literature list (on TUWEL)
- 29.04: Lecture Prof. Gröller
- 20.03: Lecture Prof. Wimmer
- Recorded: Lecture Prof. Kaufmann
- 20.05. 23:59 Submit report
- 03.06. 23:59 Submit review
- 25.06. 23:59 Submit slides
- 26.06. 10:00-17:00 (if required) Seminar talks
- 26.06. 23:59 Submit final report



### **Topic Presentation**



- Now 16 topics will be presented
- After the presentation, please mark down at least 3 in order of preference (1, 2, 3, ...) and post your preferences in forum "Discussions" until the end of the day
- I will try to make a fair assignment of topics in case of conflicts and post them in forum "Announcements"




#### 1 Street Lanes and Markings Detection



Detect all types of road markings governing traffic regulations: Deep learning of location, pose, segmentation, and classify type

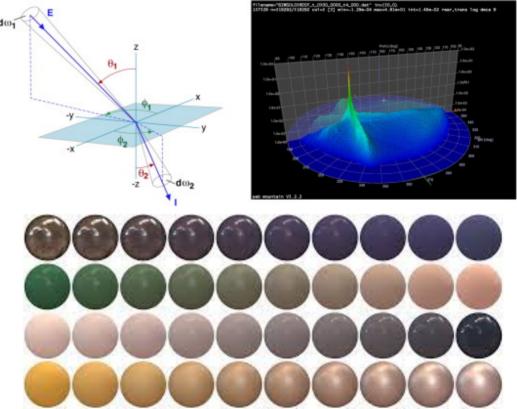


https://arxiv.org/pdf/2110.11867.pdf



https://github.com/wvangansbeke/LaneDetection End2End






#### 2 Representation of Measured Materials

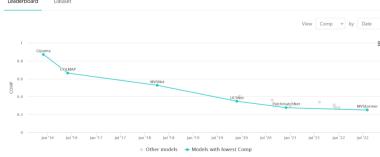


Conduct a survey of recent advances in the representation and application of measured materials





# 3 Datasets for Deep Learning




- Focus on 3D Reconstruction
- Sizes, Properties, Benchmarks





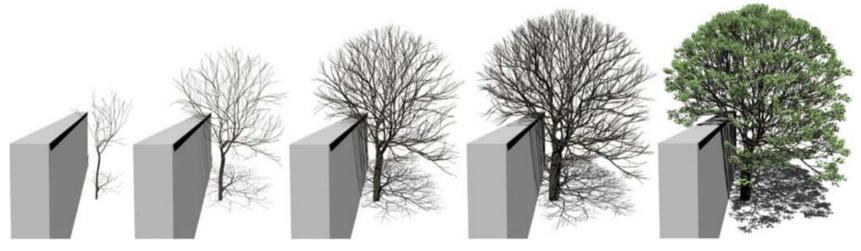
#### 3D Reconstruction on DTU



https://paperswithcode.com/sota/3d-reconstruction-on-dtu







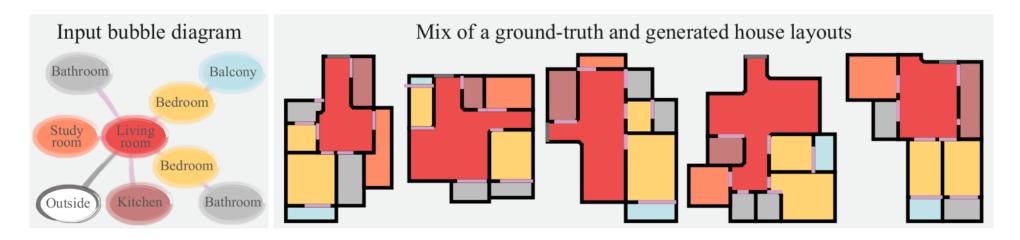



#### 4 Growth Models of Plants



- Biologically-driven, physically-based
- All over its lifespan
- Procedural modeling vs. simulation




By Yi et al. from Tree Growth modeling Constrained by Growth Equations in Computer Graphics Forum 37 (2018)

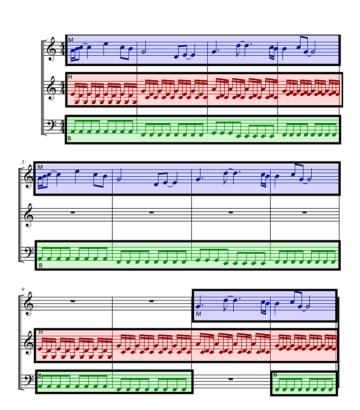


#### 5 Procedural Floor Plans



- Automated generation of Floor Plans
- Procedural vs. Al approaches
- Various levels of control




By Nauata et al. from House-GAN++" Generative Adversarial Layout Refinement Network towards Intelligent Computational Agent for Professional Architects at CVPR 2021

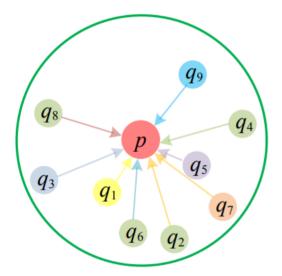


#### 6 Generative Music Systems

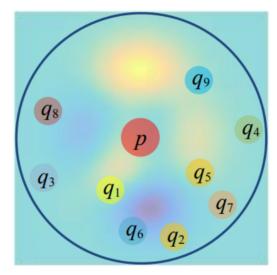


- Various methodologies
- Interactive and adaptive
- Tools for Games, Videos etc.

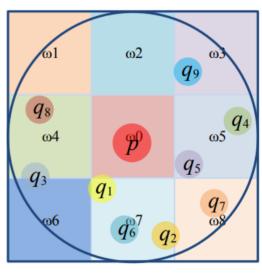



By Plut and Pasquier from Generative Music in Video Games: State of the Art, Challenges, and Prospects in Entertainment Computing 33 (2020)




### 7 Geometry Representations in Deep Learning




Defining convolutions is more complex in 3D, compared to images

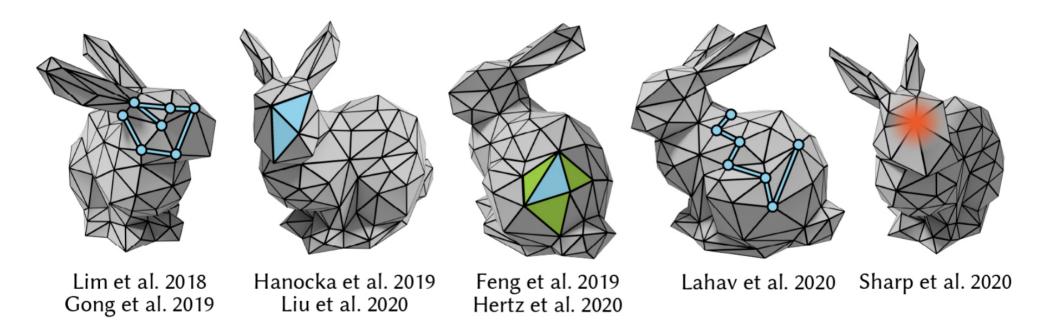


(a) 3D neighboring points



(b) 3D continuous convolution




(c) 3D discrete convolution



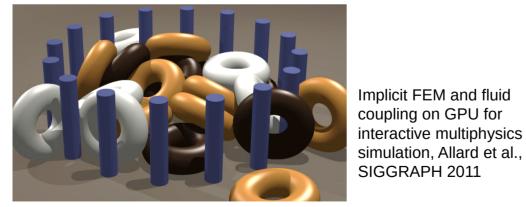
# 7 Geometry Representations in Deep Learning



#### Defining convolutions is more complex in 3D, compared to images



... and even more so on triangular meshes.




#### 8 GPU-accelerated simulation





developer.nvidia.com/flex



**David Hahn** 



A Massively Parallel And Scalable Multi-GPU Material Point Method, Wang, et. al (SIGGRAPH 2020)

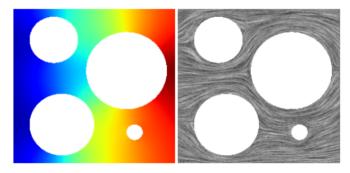
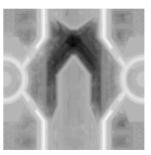
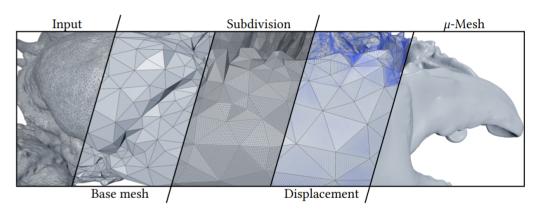



Fig. 9. Potential flow reconstruction from the velocity boundary condition.

A Practical Walk-on-Boundary Method for Boundary Value Problems, SIGGRAPH 2023




# 9 Displacement Mapping for Ray Tracing




# Displacement maps are straightforward to rasterize, but nontrivial to ray trace

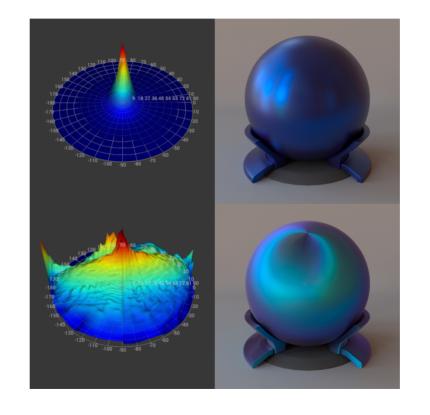








Maggiordomo, Andrea, et al. "Micro-Mesh Construction" *ACM Transactions on Graphics (TOG)*. Vol. 42. No. 4. ACM, 2023.


Thonat, Theo "Tessellation-Free Displacement Mapping for Ray Tracing" ACM Transactions on Graphics (TOG). Vol. 40. No. 6. ACM, 2021.



# 10 Rendering Measured Materials



An overview over the latest techniques to render measured materials





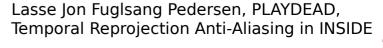
# 11 Outdoor photo registration and photogrammetry







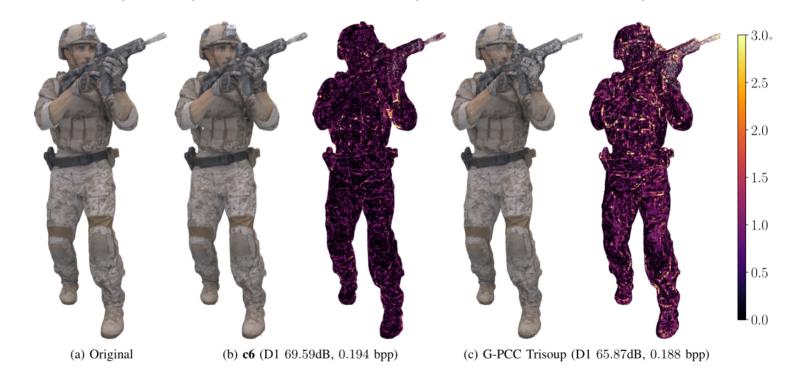

(own work)




# 12 Temporal Anti-Aliasing and Upsampling Techniques



- Analyze the state of the art in Temporal Anti-Aliasing (TAA) techniques
- Different approaches, e.g. Adaptive Ray Tracing, etc.
- Also cover the related(!) field of upsampling techniques
- I.e. render in a lower resolution => upsample
- Techniques like, e.g., AMD's FidelityFX™ Super Resolution
- Learning-based Techniques like, e.g., NVIDIA DLSS
- Describe connections, interactions, and interdependencies between TAA and upsampling techniques
- Describe the latest techniques





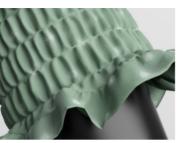


# 13 Point Cloud Compression



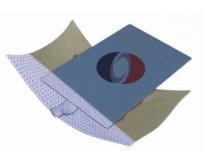
#### Conduct a survey on point cloud compression techniques








#### 14 Cloth Simulation and Rendering








GPU-based simulation of wrinkles

https://dl.acm.org/doi/pdf/10.1145/3450626.3459787



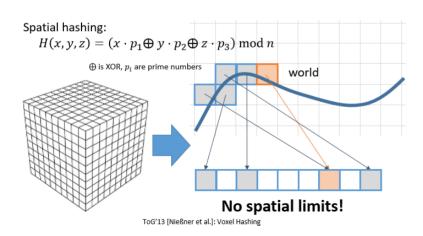


Robust collisions
https://mmacklin.com/sdfcontact.pdf



Yarn Deformations

https://visualcomputing.ist.ac.at/publications/2021/MADYPG/



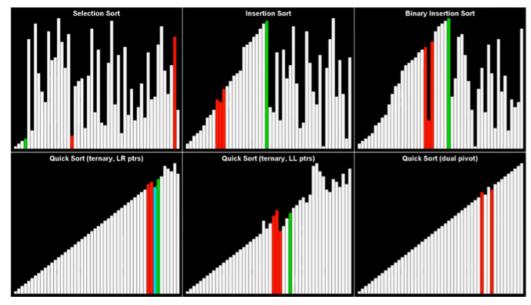



### 15 Spatial Hashing



- Space Partitioning with hash maps
- Huge ("infinite"?) "sparse grid" instead of quadtree, octree, ...
- Hash map entries for occupied space (cells)
- O(n) lookup of geometry around given world coordinate
- Investigate algorithms, use cases, etc.








# 16 Sorting on the GPU



- Overview over various sort algorithms
- Advantages, Limitations, Performance, ...



https://www.youtube.com/watch?v=BeoCbJPuvSE



### Questions?



- Get in contact with your supervisor ASAP
- Discuss literature list with your supervisor
- Submit the list to TUWEL by 1.4.

