
Assignment 3: Materials and Importance
Sampling

Deadline: 2022-05-24 23:59

In this assignment, you will extend the Monte Carlo rendering system from the previous
assignment with basic materials, importance sampling of various functions and next
event estimation. In the above image, we see what these methods can do: the left scene
is rendered with uniform hemisphere sampling. In the center, we use cosine-weighted
hemisphere sampling (importance sampling). On the right, we use next event estimation
to perform surface sampling in a recursive path tracer. Images were rendered with the
same number of samples per pixel (32).

This assignment is quite long (more than 50 points in total), but don’t feel pressed to
implement everything. You should read the sheet carefully and then choose whatever
is most interesting to you, but also note that some steps build on others (e.g., you can’t
implement next event estimation without solving surface sampling first).

We have updated the assignments repository. Please merge all upstream changes
before starting to work.

git checkout master
git pull
git merge submission2 # just to be sure
git push # just in case something fails, make a backup
git remote add upstream git@submission.cg.tuwien.ac.at:rendering-2022/assignments.git
git pull upstream master.
git push

1



We also provide a reference implementation for assignment 2, you can download it from
TUWEL.

1 Sample Warping (3 easy points, 7 bonus points)

Random numbers are often generated uniformly in the range between 0 and 1. We can
combine multiple such random numbers to sample cartesian domains uniformly, but
different distributions are needed, e.g., to get uniform distribution in a non-cartesian
domain (for recursive rendering, we need to sample the hemisphere for instance), or for
importance sampling techniques.

The process of changing one distribution to another is called warping. In this assignment,
you will start with easily obtainable, canonic random inputs, and convert them to new,
useful distributions. The input to all warping functions are two uniformly distributed
([0, 1)) random numbers, and the output are samples on the target domain. The input is
always a 2D vector with values of two canonical random variables ξ1,ξ2.

In many cases, we may have an existing sample and need to obtain its PDF value for a
given sampling strategy, thus a method to produce the PDF from input samples is also
required. The input is always a sample x, 2D or 3D, for which a PDF value p(x) value
should be computed.

To visualize and check your implementations, we will be using the warptest executable,
which is part of the Nori framework. You should complete several of the warping functions
that it tests. For an introduction on how to use warptest and what each distribution is
supposed to do, please refer to the Assignment 3, Part 1 from the Nori home page (https:
//wjakob.github.io/nori/). Note that our scoring system is different, please find it
below. This task can be fully solved in warp.cpp. SquareToUniformHemisphere is already
there, some of you were already cleverly using it in the first assignment to do uniform
hemisphere sampling.

squareToTent 1 point, test your basic Monte Carlo sampling knowledge, bonus

squareToUniformDisk 1 points, required

Sampling: Use the input canonic variables to generate samples (r,θ) in polar
coordinates where r ∈ [0,1) and θ ∈ [0,2π), such that they are uniformly distributed
on a disk when transformed to Cartesian coordinates (x, y). Return the current
sample (x, y) at the end of the function body.

PDF: The input is a 2D vector with a sample location in Cartesian coordinates

2

https://wjakob.github.io/nori/
https://wjakob.github.io/nori/


Figure 1: Reference solutions for uniformly distributed samples on the unit disk

(x, y) on a square, with x, y ∈ [−1,1) . Return the proper value for the corresponding
result from the uniform distribution PDF p(x, y) on the disk. Note: For a uniform
distribution, the PDF is constant. Just make sure that the sample location is valid!

squareToUniformSphere 1 point, can use it to implement spherical lights, bonus

squareToCosineHemisphere 2 point, required

Sampling: The input is a 2D vector sample that holds values of two canonical
random variables ξ1,ξ2. Use them to generate samples (θ,φ) on the unit hemisphere
such that they have a distribution proportional to cos(θ) (i.e., more samples the closer
we get to the pole of the hemisphere) and convert them to ω with the transformation
for spherical coordinates. Return the sample (x, y, z) at the end of the function body.

PDF: Input is a 3D vector with a sample location ω on the unit sphere in Cartesian
coordinates (x, y, z) with all values in range [0,1) and

√
x2 + y2 + z2 = 1 (z is up).

Return the appropriate result for the PDF value p(ω). Compute and return the
appropriate result for a PDF with distribution p(ω)∝ cos(θ).

squareToBeckmann 5 points, used for some microfacet materials, bonus

3



2 Light surface sampling (3-6 points)

Extend your direct lighting integrator to support emitter surface sampling. This is a
prerequisite for next event estimation and multiple importance sampling.

Light surface sampling is important for performant path tracers. In contrast to hemisphere
sampling, you are not simply shooting rays around the hemisphere and hope to find light.
Instead, you try to connect hit points directly to light sources and check if that connection
is possible, i.e., you switch from a hemisphere to an area integral.

For this, you will need to sample area light surface areas, hence you need a function to pick
uniformly random points on the surface of each light. There are 2 options, of which you
should choose one for your implementation:

1. Parallelogram lights (3 points) Works for any light source that can be described
by a parallelogram. Parallelograms are easy to sample uniformly, just use a linear
combination k1a+k2b of its side vectors a,b with coefficients k1,k2 where 0≤ k1,k2 <
1. Obviously, this option will limit possible light source shapes in your scene.

2. Triangle mesh lights (6 points) This can give very cool results, i.e., imagine a
glowing mesh. Mesh sampling is not that hard either: select triangles in a mesh,
either uniformly or according to their surface area (larger triangles are more of-
ten selected). The implementation in nori/dpdf.h will be useful here. Once you
have selected a triangle, sample a point on it (http://mathworld.wolfram.com/
TrianglePointPicking.html).

You can get 3 points for parallelogram or 6 points for triangle mesh lights, but not both.

Task 1 Implement sampling. The parallelogram, mesh, or emitter classes would be
good places (your choice). You need to implement something like samplePosition (taking
random numbers, returning a position and its surface normal) and pdf (taking a position
and returning the sample probability density).

Task 2 To pick one of the available light sources for sampling, you will need a list of
emitters in the scene. Hook into Scene::addChild. In our assignments, surface emitters
are always children of meshes. The switch emitter case is for point lights or other emitters
without physical surface, you can ignore it for now. Additionally, the emitter object needs
a reference to the geometry (mesh or parallelogram, otherwise the sampling code has no
data). Don’t be afraid to add stuff to headers or create new ones, it’s your design now.

4

http://mathworld.wolfram.com/TrianglePointPicking.html
http://mathworld.wolfram.com/TrianglePointPicking.html


Task 3 Implement the direct lighting integrator for light source sampling. Pick a light
source, either uniformly or according to the emitted light (importance sampling), and then
sample a point on its surface. Once you have a point, cast a shadow ray and compute the
contribution, if any (f(x) divided by joint PDF). The PDF here should reflect each choice
you made in the current sample, to compensate for all the choices you did not consider:
the selection of one light source from the available ones, for mesh lights the choice of one
triangle from all available ones, and the choice of a single sample point on the surface area.
Add a boolean property surface_sampling (default: false) which should be parsed from
the scene files to allow switching between hemisphere sampling and surface sampling.

3 Materials (15 Points)

3.1 Mirror BSDF (3 easy Points)

The mirror BSDF reflects the incoming ray about the normal. All light (and importance) is
reflected in exactly this (and only this) mirror direction. This has several implications:

• A beam of light reflected off a mirror surface will retain all of its radiance. Technically
this means, that the BRDF of a mirror is actually 1/cosΘ. In Nori, however, the
cosine term is computed in the BSDF::sample function for all materials. We can
therefore omit the computation for the cosine in BSDF::sample and just return 1.

• The PDF is a Dirac delta function (spike in a singular location with infinite height,
which integrates to one). When querying for the pdf or the eval function, we hence
just return 0 (in theory it is almost surely impossible to generate such the direction
where the spike is located by chance, in practice it’s super unlikely).

• We specify bRec.measure = EDiscrete to indicate to our integrators that this BSDF
did not really leave us a choice regarding the direction in which the ray continues.
This is needed for handling special cases (see next event estimation).

Implementing the mirror gives you 3 points, but enables you to gather more points for
MIS and next event estimation.

3.2 The Dielectric BSDF (9 normal Points and 3 hard ones)

A dielectric BSDF can be used to model transparent objects like glass, diamonds or water.
Implement it according to the lecture on materials or perhaps the course book PBRT. Use
the BSDF in dielectric.cpp to make your solution accessible from scene files. Note that

5

http://www.pbr-book.org/3ed-2018/Reflection_Models/Specular_Reflection_and_Transmission.html


different textbooks use different conventions for the directions and indices of refraction
that they reference. You can use any convention you like, but the setup of Nori prefers that
bRec.wi should be the negative view ray direction. The dielectric BSDF cannot give you
the medium of the volume the view ray is coming from and the one it goes to, you should
figure this out yourself. It only provides the index of refraction on the exterior and the
interior of the object with the given material.

One important note: before, we offset our rays along the surface normal when continuing
with the next bounce from a reflective surface to avoid self intersections. But, if you
actually want to enter an object, this is not a good idea! Instead, offset your rays along
the negative surface normal. Also, if you want your dielectrics to work with next event
estimation, you basically have to treat a hit with them like a hit with a mirror material,
because it only reflects / refracts in a single direction.

Implementing until here gives you 9 points.

While working on dielectrics, you might wonder what the BSDFQueryRecord::eta is for.
This is only really necessary when you perform Russian Roulette with throughput. When
light switches media (e.g. vacuum → glass), the radiance it carries changes. This change
of density should be included in the BSDF weight that you return from the BSDF sample
method. But, if you use Russian Roulette with throughput, then this may erroneously
affect your decision to stop, since the throughput is now no longer strictly going down with
every bounce, but may in- or decrease somewhat randomly as you switch between media.
We can counter this by keeping track of the relative eta in addition to the throughput.
After each sampling / evaluation of the BSDF, we can update eta *= bRec.eta, and
use it to modify the Russian Roulette survival probability to remove the influence on
the estimated throughput from switching between media. For this to remain stable in
all scenes, make sure that the other supported materials (diffuse, mirror) set a proper
bRec.eta = 1 to avoid unexpected behavior. Implementing this bRec.eta business including
RR gives you 3 hard points. You wouldn’t be alone, we also wonder. It came from up-
stream, and we couldn’t get it to make any difference. If you manage to demonstrate an
improvement and explain to us why, you can get 30 hard and risky extra points. You
may have to create your own scene.

4 Importance Sampling (1 easy points, 9 normal points)

4.1 Cosine-weighted sampling of diffuse BSDFs (1 easy points)

Use the cosine-weighted hemisphere sampling method, as described in the lecture. First
make sure that your direct lighting and path tracing integrators use the diffuse BSDF class
appropriately, then extend the diffuse BSDF with cosine-weighted hemisphere sampling.

6



Ideally, you can reuse your warping solutions from the first part of this assignment! The
BSDF should switch between using cosine-weighted and uniform hemisphere sampling,
depending on the value of the use_cosine flag provided by each object’s material (default:
false). Note that this affects both the sampling and PDF computation! Confirm for
yourself that cosine-weighted hemisphere sampling can reduce the noise in your scenes. To
test this, compare the output of the test scenes that end in uniform with the ones that end
in cosine. The latter use cosine-weighted hemisphere sampling and should give slightly
cleaner results.

4.2 Next Event Estimation with diffuse materials (4 points)

Implement next event estimation (NEE) for your diffuse path tracer using the 0/1 strategy,
i.e., no mixing of sampling strategies. This requires support for light surface sampling.

It should be active depending on a boolean nee in the test file (default: false). On every
bounce, you create one light surface sample, make a ray intersection test from the current
position, and compute the contribution. Another ray is then sent out to retrieve indirect
light in the next bounce. Ideally, you’ll importance sample the BSDF for indirect light to
benefit from cosine-weighted hemisphere sampling. Be careful not to erroneously count the
emittance twice (i.e., first when doing the light surface sampling and then when hitting a
light source randomly). To get a correct image, hit emitters should only be considered on
the first intersection. For all other light, the illumination is computed via direct lighting,
i.e., one bounce in the future (hence, "next event"). For further details, please see the
lecture slides. Just as a heads-up: implementing NEE will dramatically improve the
quality of your renderings! In combination with spatial acceleration structures, you should
now be able to render impressive scenes fast! To test this, compare the output of test
scenes that end in uniform or cosine with ones that end in nee. The latter use next event
estimation and should give significantly cleaner results.

4.3 Next Event Estimation with discrete PDF BSDFs (5 points)

Mirrors and dielectrics have a Dirac delta-like BSDF (and associated probability function,
Nori calls them discrete PDFs or measures).

The key conjecture is that no random hemisphere sampling method could ever hit the
singular reflection vector for an incoming view ray by accident, so BSDF sampling is
imperative for these materials. If you connected a surface sample to the hit point on such a
surface, the BSDF would just say "Nah, no light going through these directions". This is the
same as trying to hit exactly 0.5 with a random number between 0 and 1, the probability is
0 (in a computer that would in fact eventually work, but let’s not be pedantic).

7



If you want mirror materials to play nice with NEE, you need to take special care: for any
direction that is not explicitly the reflection vector, the sampling probability is 0, so you
simply can’t do light source sampling on mirrors. But if you just ignore direct light on
mirror materials, the light sources will be missing in mirror reflections! Hence, you need
to treat this as a special case:

1. Do not perform NEE when on such a surface.

2. If the previously hit surface had a discrete BSDF PDF, then do add the emittance
of the current surface. BSDFQueryRecord::measure and EMeasure::EDiscrete were
made for this purpose.

You can achieve 5 points if you make mirror materials work with NEE.

5 Multiple Importance Sampling (MIS, 5 normal points 10 hard
points)

MIS is a bit hard to wrap your head around it, but once you do that, you can get quite a
light bulb moment. We will try to go slow about it, and divide the implementation into
several parts. Again, you will need support for light surface sampling to do this, as well as
cosine-weighted hemisphere sampling.

5.1 MIS for Direct Lighting (5 points)

Implement MIS between hemisphere sampling and light surface sampling using the
balance heuristic in your direct lighting integrator. Whether or not MIS is used should
be parameterizable via boolean mis_sampling (default: false) in the test files. Choose
between the two sampling strategies with equal probability, generate the sample using the
chosen method and compute the sample’s probability with both methods. You should use
the surface’s BSDF to generate the hemisphere samples to benefit from cosine-weighted
hemisphere sampling if it is enabled by a material. Then use the equations from the lecture
to compute the proper MIS weight. Return the contribution that you would get with the
chosen method, multiplied by the MIS weight and a straight forward compensation term
for the random choice of picking one method over the other. You should use the balance
heuristic, simpler heuristics will count but not give full points.

You can test MIS on the ajax-2lights_dl*.xml scenes, where you should be able to observe
the following: the small area light is better suited for surface sampling, while the larger

8



one is better with cosine-weighted hemisphere sampling, but MIS can give you the best of
both worlds.

5.2 MIS for Path Tracing with diffuse materials (5 hard points)

If you implemented next event estimation (NEE) earlier (Section 4), the simple 0/1 im-
plementation of NEE is to always choose one strategy for a particular bounce and path.
This is already a valid MIS strategy, but it’s often not the best one. Implement the balance
heuristic for NEE!

This is not a lot of code, but it is quite tricky and intricate. Instead of randomly sampling
the strategy, like before, we always choose both strategies. Accordingly, we do not have a
correction factor for randomly choosing a strategy. It is also split into two places: 1. When
you add the contribution of NEE, and 2. when you add the contribution of a randomly
hit emitter. But in principle, it is the same thing: You have to compute both sampling
probabilities (of the strategy used, and the strategy not used), and use the balance heuristic
equation for computing wi, then multiply with your contribution f (x)/pi(x). It’s important
to use the same probability space for both probabilities. You can’t put the area probability
of surface sampling into one MIS weight together with the solid angle probability of
BSDF sampling. Instead, transform the area probability into BSDF probability (change of
variables, we showed how to do that).

5.3 MIS for Discrete BSDF PDFs (5 hard points)

NEE required some special treatment for mirrors and dielectrics. This is, because those
materials have a Dirac delta probability functions: all rays are directed into a finite set
of directions (1 direction for mirrors, 2 for dielectrics). MIS requires a similar special
treatment. Implement it!

(a) Rendering with mirror materials (b) Rendering with mirrors and dielectrics

9



Submission format

Put a short PDF or text file called submission<X> into your git root directory
and state all the points that you think you should get. This does not need to be
long. Also mention the code files, where you implemented something if it is not
obvious.

To store or submit your code, please use our own, institute-hosted submission Gitlab
https://submission.cg.tuwien.ac.at. You will receive a mail with your account and
assignment repository as soon as they are ready. The master branch is for development
only. You should push there while you are experimenting with the assignment and don’t
want to lose your work. Once your solution works and you believe it is ready to be graded,
please use the branch submission<X> where <X> is the assignment number. E.g., in order
to submit your solution for the first assignment, push to submission1.

If you push to a submission branch, the server will trigger automatic compilation and
some testing for your code. You can track the state of new submissions being processed
on the GitLab page for your repository under "CI/CD > Pipelines". If a stage fails, click
on it to receive additional output and system information from the executing server. If
everything worked, you will shortly find a report with your test results in the "CI/CD"
pipeline section, when checking the artifacts of the "report" stage. You can submit multiple
times until the deadline, but don’t clog the system by, e.g., using the submission server for
debugging. The last submission that was pushed before the deadline counts, regardless
of the results from automatic testing. They are only meant for your convenience and to
provide some automated feedback.

Please make sure to NOT add unnecessary files (project folders, temporary
compiler results), as your application will be created from your code and CMake
setup only. Examples of files that are usually relevant:

• changed or added CMakeLists.txt files

• changed or added code files (.h, .cpp)

• changed or added test cases if you want to show off advanced solutions

Make sure to keep the directory structure in your submitted archive the same as in the
framework.

10

https://submission.cg.tuwien.ac.at


Words of wisdom

• If you are having trouble with performance, consider changing the resolution and/or
number of samples for your test cases.

• The warp tests only check if the samples you generate match the corresponding PDFs
you define. Best start with the PDFs and then try to match them with sampling.

• Hemisphere sampling, next event estimation and MIS are all methods for integrating
the same integral. Given enough samples, they all should converge to the same
result.

• If you have questions, please use TUWEL, but refrain from posting critical code
sections.

• You are encouraged to write your own test cases to experiment with challenging
scenarios.

• Tracing rays is expensive. You don’t want to render high resolution images or complex
scenes for testing. You may also want to avoid the Debug mode if you don’t actually
need it (use a release with debug info build!).

• To reduce the waiting time, Nori runs multi-threaded by default. To make debugging
easier, you will want to set the number of threads to 1. To do so, simply execute Nori
with the additional arguments -t 1.

Appendix: The Phong BSDF

The Phong reflection model is one of the oldest ones, but not physically plausible. Hence
we banished it to this appendix (used to be extra points, but not anymore, information only
for interested readers). The original Phong was not even energy conserving, therefore we
will present the modified Phong (Lafortune and Willems, 1994). That report might be a bit
hard to read (but doable, and there are some additional variance reducing improvements),
so we will distil everything important into a summary.

Phong is a glossy BSDF, consisting of a diffuse and specular part. The BSDF equation is:

fr(x,v,ω)= fr,d(x,v,ω)+ fr,s(x,v,ω) (1)

= kd pd
1
π
+ks(1− pd)

n+2
2π

max(0,cosnα), (2)

11

https://www.cs.princeton.edu/courses/archive/fall03/cs526/papers/lafortune94.pdf


where α is the angle between the perfect specular reflection rv and ω, kd, and ks are diffuse
and specular albedo, pd is the percentage of diffuse reflection (as opposed to specular) and
n is the shininess (specular exponent).

The modified phong is not realistic throughout all possible parameter ranges, but it is
simple and relatively easy to implement. As with the diffuse BSDF, we need an evaluation,
a sampling, and a pdf function. It should be straight-forward to write the evaluation
function, sampling is a bit harder.

Because we want to be efficient, we will again try to importance sample this BSDF. At the
beginning, we stochastically choose between sampling diffuse and specular part based on
pd. The diffuse part is sampled the same way as with the diffuse BSDF (cosine weighted
hemisphere sampling). The specular (or rather "glossy") part has the following steps:

• Implement a sample warper for the phong specular lobe.

• Rotate that lobe, so that z+ points into the direction of the perfect reflection vector.

• Reject all samples that would go below the surface, into the object (careful, see
implementation details below).

Specular Warping and Pdf We can generate samples with the Pdf

pdf(ω)= n+1
2π

cosn(α) (3)

by using the following warping

(x, y, z)=
(√

1−ξ
2

n+1
1 cos(2πξ2),

√
1−ξ

2
n+1
1 sin(2πξ2),

√
1− x2 − y2

)
(4)

You should be able to type that directly into the newly added functions in warp.cpp. Note
that this PDF (and the corresponding samples) do not exactly match the specular part of
the Phong BSDF. However, sampling it exactly is difficult (perhaps even impossible), so we
use a good-enough approximation that mimics the overall function shape.

Rotation We need to rotate our samples to rv now, but first we need the direction of
perfect reflection rv. You can copy the steps to compute it from mirror.cpp. Now, you could
construct a rotation matrix based on the angles of the reflection direction. But that would
require expensive calls to arccos etc. It is much easier and faster to create an orthonormal
basis from the reflection vector. We even have that already in Nori in the Frame class,
usually used to map between world and local shading frame.

12



Figure 3: Phong specular sampling

Figure 4: Phong BSDF without rotation

Let’s say, the reflection direction is the normal of a reflection frame. Then our warped
sample is also in the reflection frame, and we call toWorld() to rotate it into our shading

13



Figure 5: Phong Specular BSDF with rotation

Figure 6: Phong BSDF with rotation and diffuse part

14



frame.

Constructing that frame requires the reflection vector (goes in through the 3rd parameter)
and 2 vectors orthogonal to it. The cross product between the reflection vector and a
non-parallel vector gives one orthogonal vector, and another cross product the other. The
reflection vector will be one axis of the frame. Find a stable way to construct the remaining
two axes for an orthonormal basis around the reflection vector.

Implementation Details

• You need to implement things in warp.cpp and phong.cpp. Use warptest for testing,
there is not only a test for the warp, but for the whole BRDF as well.

• cosnα becomes unstable for large exponents, but using our importance sampling
method, it appears in the pdf as well, so it cancels out. Use that in your sample
function. Do not try to do MIS between diffuse/specular part (I tried, it doesn’t work).

• Rejection sampling: Do not create a new sample if the one you got is below the surface
after rotation. Instead, clamp the contribution to zero, you can easily do that via the
cosθ term, which belongs to the BSDF now. The reason is, that it wouldn’t be possible
to compute a correct pdf value if you did "do x = sample(); while(is_bad(x))".

15


	Sample Warping (3 easy points, 7 bonus points)
	Light surface sampling (3-6 points)
	Materials (15 Points)
	Mirror BSDF (3 easy Points)
	The Dielectric BSDF (9 normal Points and 3 hard ones)

	Importance Sampling (1 easy points, 9 normal points)
	Cosine-weighted sampling of diffuse BSDFs (1 easy points)
	Next Event Estimation with diffuse materials (4 points)
	Next Event Estimation with discrete PDF BSDFs (5 points)

	Multiple Importance Sampling (MIS, 5 normal points 10 hard points)
	MIS for Direct Lighting (5 points)
	MIS for Path Tracing with diffuse materials (5 hard points)
	MIS for Discrete BSDF PDFs (5 hard points)


