

Rendering Accessories
Adam Celarek

Research Unit of Computer Graphics
Institute of Visual Computing & Human-Centered Technology

TU Wien, Austria

Hi and welcome to this lecture about rendering accessories. By
accessories I mean things, that are important, but don’t really
fit into any of the other lectures.

Rendering Accessories (Adam Celarek) 2

 Sampling theory and filtering
 Parallelisation
 Post-processing
 Measuring Error
 Stratification and sampling patterns

Overview

We will start with a bit of sampling theory and learn how to use
filtering to prevent aliasing.

Next we’ll talk about parallelisation, and how to deal with
filtering in practise.

Post-processing is at the end of the rendering pipeline, we will
learn about how to map the high-dynamic range data to
computer displays and files.

Then we’ll have to talk about measuring error a bit, and last but
not least we’ll take a step back and see how to reduce error
by using more uniform samples.

Rendering Accessories (Adam Celarek) 3 source: own
work

Sampling theory and filtering
Mission: Prevent sampling artefacts (aliasing)

Let’s start with sampling theory and filtering, the goal of which
is to reduce or prevent sampling artefacts, or in other words
aliasing.

By the way, that picture is from Finland, the home of some very

good computer graphics people..

Rendering Accessories (Adam Celarek) 4

Sampling theory and filtering

With filtering Without filtering
source: Table scene designed by Olesya Jakob rendered with

Nori

We begin with an example..

On the left filtering was used, on the right not.

The left looks a bit better when you compare **point** and
point, but we can zoom in to see the difference more
clearly..

Rendering Accessories (Adam Celarek) 5

Sampling theory and filtering

With filtering Without filtering
source: Table scene designed by Olesya Jakob rendered with

Nori

There are these bright pixels **point** in high frequency areas,
that clearly go away when we filter..

We have to look into it :)

Path Tracing II (Adam Celarek) 6

 We are in the main rendering loop, where we loop over
pixels and the number of samples N, create a camera ray
and then start tracing it.

Sampling theory and filtering

Let me give some context about where filtering happens..

It is applied in the image coordinate system, where we see the

pixels. That means that it lives in the main rendering loop,
where we walk over pixels – in contrast to where we lived in
the first part of the path tracing lecture, the recursive part.

Rendering Accessories (Adam Celarek) 7

 We are in the main rendering loop, where we loop over
pixels and the number of samples N, create a camera ray
and then start tracing it.

 Until now, every ray was shot through the pixel centre

Sampling theory and filtering

Curren
t pixel

All N samples
go through the
centre

Okey, this is for context: We are in the main rendering loop,
where we go over all pixels and the number of samples N,
create a camera ray and start tracing it.

Until now, we shot every pixel contribution ray through the
centre. But this is just an arbitrary choice. The underlying
integral and code works for all floating point positions in the
pixel plane.

Rendering Accessories (Adam Celarek) 8

Sampling theory and filtering
 Forget one screen dimension (works the same for higher

dimensions)

Next, we’ll forget about one of the screen dimensions and start to think about a 1d
function f(x). This is to make the explanation easier. All of the results also apply to
the 2d screen we have in rendering.

The green wavy line *point here and here*, is now the function that we want to

sample and reconstruct as pixels on the screen.

Here **point** you see the path integral formulation of light transport, because it’s

shorter.

It’s the integral *point f* of the light transport function *point fj* over all transport

paths. You already learned in the first part of this lecture how to estimate the
result using Monte Carlo. It’s the same process no matter the notation.

But we can also use the recursive formulation. In that case, we would say that we

have a function f that eats screen coordinates. The definition of the function tells
to shoot a ray through that position, and compute the light recursively. That
recursive computation returns the brightness at that position of the screen. Until
now it was always the pixel centre, but it’s valid for all screen positions.

For now we assume that f(x) is a continuous function – as opposed to a stochastic

variable like in Monte Carlo Integration. That means that it always returns the
same value for a given position, and positions are not discrete like monitor pixels.

Rendering Accessories (Adam Celarek) 9

Sampling theory and filtering
 Forget one screen dimension (works the same for higher

dimensions)
 This is a sampling problem,

much like with an analogue
audio signal.

 We want to reconstruct the
original signal after sampling

Sample
positions

Now – we have that function *point f*, but only discrete pixels
point, where each of them can display a single value.

This is a sampling problem, very much like when you have to

convert an analogue audio signal to a digital signal, and then
play it.

Let’s say, we go the simple and naive way and sample the

signal at the centres of the pixels..

Rendering Accessories (Adam Celarek) 10

Sampling theory and filtering

Sample
positions

This is OK. The
reconstruction is
faithful!

Here not so much!

After sampling we have to reconstruct the signal, that is, draw it on the
screen. As said, every pixel can have only one value, hence the
boxy **point** reconstruction.

This gives us a faithful representation of f if the frequency is low

point on the left. By faithful I mean here, that the pixel values are
close to the signal f, and that they would not change much if we shift
the sample positions by a tiny bit (less than a pixel).

So sampling the pixel centres works if the signal f has a low frequency,

but it breaks down when the frequency becomes too large. The
problem is called aliasing, you probably already heard about it. It
happens when the sampling frequency is below the Nyquist
frequency, which is 2x the signal frequency.

There are 2 solutions: increase the sampling frequency or smooth the

signal. We can’t really do the first, because it would change the
rendering resolution, besides, when would we stop? But we can
smooth the signal...

Rendering Accessories (Adam Celarek) 11

Sampling theory and filtering
Solution: Smooth the signal before sampling with a low pass filter h(x)

Sample
positions

Smoothing the signals means to apply a low pass filter h. We
are filtering out high frequencies – hence the name of this
section.

Look at that, if we sample the signal f*h **point** at the centres

of the pixels, it will give us faithful values to be used for the
reconstruction as a pixel signal.

You might think that we loose data, but that is not really the

case as we couldn’t reproduce it anyway.

Let’s look now into choices for the filter (or convolution) kernel

h

Rendering Accessories (Adam Celarek) 12

Sampling theory and filtering
What are the choices for smoothing kernel h(x)?
Well, first, what properties do we need?
 It should integrate to 1,

otherwise the result would be brighter or darker than it should be.
Well, actually, that is only needed theoretically, because our implementation will use
normalisation anyways.

 The smoothing should be the right size
 Too small and too many of the large frequencies are retained
 Too large and we get visible blurring

 A shape that reduces artefacts (will not go into detail, see reading material).

But first, let’s look at the properties that we need.

First, it should integrate to 1. This is because f(x) convoluted with h(x)

should not be brighter or darker than the original signal f. This is
more of a theoretical constrain, as any convolution kernel can be
scaled and in fact we do that as part of the equation that we use.

Obviously the kernel shouldn’t be too small or too large. In the first

case we wouldn’t fix the reconstruction problem, or in the second
case we would loose too much details.

And finally, we need a good shape. Depending on the shape, some

artefacts might appear. Different shapes can create different
artefacts, and it’s generally a trade-off between these artefacts. But
we won’t go into much detail there, because we would need much
more sampling and reconstruction theory including the Fourier
transform (not going there, not this time :)

Rendering Accessories (Adam Celarek) 13

Sampling theory and filtering
What are the choices for smoothing kernel h(x)?

1D

2D

bo
x

tent Gaussian
(with cut-

off)

Here we see some choices for the kernel.

The first row is the 1d case and the cross section through the

centre of the 2d case at the same time.

The simplest is the box filter, which is super simple to

implement. You just take the average of all pixel samples
(we’ll talk more about how to implement later). It is common
in super simple renderers, in case the author is too lazy to
implement something better. It allows high-frequency sample
data to leak into the reconstruction (PBR 7.8.1).

The tent filter is slightly better

And the Gaussian filter is reasonably good, but smooths the

result.
Did you see that it is clamped **point**. This is to limit it’s

support.

Rendering Accessories (Adam Celarek) 14

Sampling theory and filtering
What are the choices for smoothing kernel h(x)?

source: Vierge Marie, Wikipedia
(public domain)

Mitchell-Netravali-Filter with parameters
(⅓, ⅓)

There is a family of filters called Mitchell-Netravali. You can see
that they can be negative **point**. This sharpens the result
somewhat, but can cause an artefact caused ringing
(depending on the parameters).

The Mitchell-Netravali filter is considered the best by some,

and I think it is a bonus task in our assignments.

Anyway, we will not go into further details in the differences. In

my opinion, they are minute between Gaussian and Mitchell-
Netravali.

Rendering Accessories (Adam Celarek) 15

Sampling theory and filtering
How?

Pixel

Filter h(x)

Signal f(x)

Samples X

Ok, we have seen why, we have seen the filters, but not how that
works in the context of rendering. So here we go:

You see the signal f(x) and the filter kernel h(x) here. Before we said

that we compute the convolution between f and h in order to get a
smooth signal.

But we do not have the signal f as a function, we can only sample it.

And so we need to change the approach somewhat.

We see that the centre of the filter kernel is placed over the centre of

the pixel. This is like we wanted to compute the value of f
convoluted with h on that position. And that makes sense, because
we later want to reconstruct f(x) by sampling f*h(x) at the pixel
centres.

And now we take samples of f times that shifted kernel h. Samples

close to the centre of the pixel will have a large kernel weight and
therefore a larger contribution to the pixel value.

Rendering Accessories (Adam Celarek) 16

Sampling theory and filtering
How?

Pixel

Filter h(x)

Signal f(x)

Samples X

h*f
Normalisation
(box: divide by
N)

Here you see the equation for that process.

In the numerator **point** you see exactly what we said before:

the sample value of f is multiplied with the value of the kernel
centred at the pixel we want. This is the same as
convolution.

Remember we said that h should integrate to 1? So in theory

we would use N instead of the sum in the denominator
point. The sum results in N on average. However, using
the formula as it is reduces noise.

Rendering Accessories (Adam Celarek) 17

Sampling theory and filtering
How?
 In 1d:

 In 2d:

And here you see the equation for the 2d case, that we actually
have in case of rendering. It works the same way.

Now, let’s have a graphical view of the kernel again..

Rendering Accessories (Adam Celarek) 18

Sampling theory and filtering
How?

The green circle **point** is the filter, the red dots **point** are
the samples for the current pixel.

The filter kernel is larger than the current pixel...

Rendering Accessories (Adam Celarek) 19

Sampling theory and filtering
How?

.. and so pixel samples also contribute to neighbouring pixels.

You can see that here on the left, where these samples

point would also contribute to that pixel **point**.

Similarly, samples in this pixel **point neighbouring pixel in the

centre image** also contribute to that pixel **point at current
pixel in centre image**.

Etc, this applies too all the neighbouring pixels.

OK. I hope that is more or less clear, and we are ready to look

at another thing concerning filters..

Rendering Accessories (Adam Celarek) 20

Sampling theory and filtering
Separable filter kernels

Works for: Gaussian, tent,
box, Mitchell-Netravali, ..

Many discrete smoothing filters are separable. That means that
the matrix **point** used for filtering can be produced from
the outer product of two vectors **point**.

This applies for instance to the gaussian, tent, box and

Mitchell-Netrevali filters. And since these filters are
symmetric, the two vectors have the same values.

Separability allows us to implement filtering more efficiently, as

we need to store only one vector instead of the whole matrix.
The filter values can be computed on the fly. In case you
work on the last assignment at TU Wien, this is the code that
you have to complete.

Rendering Accessories (Adam Celarek) 21

Sampling theory and filtering
We know
 Why Anti-aliasing→
 Which filters low-pass, box, tent, Gaussian, others→
 How Convolution + normalisation→
 That a sample can also affect neighbouring

pixels, depending on the filter.

Alright..

We learned that filtering fixes aliasing problems. Low pass

filters are used, and the process includes convolution and
normalisation.

Most filters are larger than a single pixel, and so most samples
affect more than a single pixel.

Rendering Accessories (Adam Celarek) 22

Sampling theory and filtering
Reading
 Pharr, et al., Physically Based Rendering (Chapter 7)
 Smith (1995), A Pixel Is Not A Little Square!
 Mitchell & Netravali (1988),

Reconstruction filters in computer-graphics
 Search for sampling theory

Here are some reading links

Check for instance our course book. It covers sampling and

reconstructing quite extensively, including more sampling
theory and comparisons between the different filter types.

A classic read is “A pixel is not a little square”

You can also ready the original paper by Mitchell & Netravali

And finally I’ve seen, that there are many youtube videos about

sampling theory, and even more text resources on the net.

http://www.pbr-book.org/3ed-2018/Sampling_and_Reconstruction.html
http://alvyray.com/Memos/CG/Microsoft/6_pixel.pdf
https://dl.acm.org/doi/pdf/10.1145/378456.378514

Rendering Accessories (Adam Celarek) 23

 Low-pass filter for image signal
 Sample in pixel centre

source: own
work

Sampling theory and filtering
Mission: Prevent sampling artefacts (aliasing)

That concludes our section about sampling theory and filtering,
although we’ll see it again in the next section. Filtering
prevents or at least reduces sampling artefacts by low-
passing the image signal and then sampling in the pixel
centres. These samples are then used as the pixel colour.

Rendering Accessories (Adam Celarek) 24 source: own
work

Parallelisation
Mission: Performance

And now, let’s have a quick look at parallelisation.
The goal is clearly to harvest the performance of modern multi-

core systems.
That is already crucial today, but it becomes more and more

important as the core counts increase.

Btw: If you read papers from the 90ies, that won’t be the case.

This picture is also from Finland, they have a lot of amazing

lakes and forests, and summer at a cabin is super relaxing :)

Rendering Accessories (Adam Celarek) 25

Parallelisation
 Each sample Xj,i is independent

(j.. the pixels, i.. sample number)
 Could start a new thread for each sample

 Synchronisation at the sum expensive
 Overhead

 A new thread per pixel
 Still some overhead
 Synchronisation between pixels because of overlapping filters

 → Render blocks

Monte Carlo rendering is embarrassingly parallel, as every
sample of the integrand is independent. We are talking about
the paths that start or end at the camera, not the hemisphere
samples, although these would be independent as well.

So we could start a new thread for each sample. But that would

require synchronisation at the sum and probably unneeded
overhead for threading. That might pay off for GPUs, but
probably not even that. Certainly not for CPUs.

We could start a new thread per pixel – more like GPU style,

for the CPU that is still too much overhead + we would
actually need synchronisation because of overlapping pixel
filters (but that is doable).

So for CPUs we use blocks of pixels..

Rendering Accessories (Adam Celarek) 26

Parallelisation

Such blocks can have a size of for instance 32x32 pixels.

 Another advantage is that the first few bounces will have a

high probability of hitting the same geometry, and so the
caches of the CPU have fewer misses.

Blocks at the border of the image **point** are often smaller.

Rendering Accessories (Adam Celarek) 27

Parallelisation

Samples are taken for all pixels inside a block.
But as said, due to filtering, each sample can contribute to

more than one pixel – including pixels outside the block.
Therefore, each block needs an additional border to store that

contribution.

And so, when a block is handed to a thread, it must be slightly

larger than the extent of the sampling area.

This means, that blocks can overlap. We will now see, how that

is handled in a rendering system like nori.

Rendering Accessories (Adam Celarek) 28

Parallelisation

 Use a separate sum for the numerator
and denominator.

 Per render block, store these values for
a large enough border around the
block as well.

 When a block is finished, add to a
global image using blocking
operations.

When we look back at the equation for filtering, we see that
there is a sum in the numerator and the denominator. We
have to complete the sum before the division. That means
that we need to do the division after merging the blocks to
the complete image!

And that is actually quite easy, we just keep track of numerator

and denominator separately, add the blocks to the final
image using blocking or atomic add operations, and do the
division once all threads are finished.

Rendering Accessories (Adam Celarek) 29

Parallelisation

 Use a separate sum for the numerator
and denominator.

 Per render block, store these values for
a large enough margin around the
block as well.

 When a block is finished, add to a
global image using blocking
operations.

Vec4(red, green, blue,
weight)

Nori solves that by putting the 3 values of the numerator for the
3 colours and the filtering weight into a 4 element vector.

The blocking add operation doesn’t even need to know what

the data is.

As a last step we simply divide all pixels by their 4th

component.

Rendering Accessories (Adam Celarek) 30

Parallelisation
 Divide the image in small blocks, and let 1 thread work on one block
 Some other rendering algorithms might require to hold the whole

image per thread (BDPT, MLT)
 Rendering very easy to parallelise, even to multiple machines
 When using 32bit float format, we can even compute the mean of

independently rendered images.
 Some years ago I rendered stuff on a super computer in Finland

and used several thousand CPUs and more than a terabyte of RAM
at once.

For path tracing we can use this method without any problems.

But some other algorithms require access to the whole image.
For instance, that would be the case if we started tracing from the light

sources, and wouldn’t know which pixel the ray ends up.

Rendering is very easy to parallelise even to multiple machines. This

works by computing multiple images with different random seeds.
They can be added up after finishing rendering using 32 bit floating
point image formats.

That way I occupied several thousand CPUs and more than a terabyte

of RAM during my master thesis at Aalto, Finland.

Some bottlenecks start to appear once your scenes become very

large, for instance in large film productions. Sometimes the scenes
don’t even fit into RAM any more and special architectures need to
be employed.

Rendering Accessories (Adam Celarek) 31

 Render in blocks
 Blocks include a small border to

account for filtering
 Can easily parallelise to multiple

machines

source: own
work

Parallelisation
Mission: Performance

That was a short section about parallelisation.

Many renderers implement threading by rendering in blocks.

These blocks need to include a small border to account for

filtering.

And it is relatively easy to parallelise even to multiple

machines.

Rendering Accessories (Adam Celarek) 32 source: own
work

Post-processing
Mission: Store or display renderings

That is my cherry tree in Poland.

But we’ll look at post processing now. That is, what do we do

before storing or showing our computed radiance values.

Let’s start with a bit of context..

Rendering Accessories (Adam Celarek) 33

Post-processing
Dynamic Range Examples Device / Setting

Real world
800 000 : 1 Surface illuminated by sun : moon

100 : 1 Diffuse white : black surface
80 000 000 : 1 Expected real world dynamic range

Human vision
100 : 1 Photoreceptors

10 : 1 Pupil size
100 000 : 1 Neural adaptation

100 000 000 : 1 Dynamic range of human vision

Technology
1 000 : 1 Displays

256 : 1 8 bit image files
1076 : 1 32 bit float

source: Thomas Auzinger, Rendering lecture 2019

The first thing to realise is, that the dynamic range of light in the real
world is considerably larger than what we can show on displays or
store in normal image files.

Take for instance the difference between illuminating a piece of black

and white paper by the sun versus the moon. The sun’s illumination
is 80 million time stronger.

The human vision system can adapt and process a difference of up to

a 100 million. Adaptation takes some time, but still.

In technology, displays can have a difference between the brightest

and darkest pixel in the ballpark of thousands. Modern displays, that
can partly dim their backlight can do more, but that requires special
drivers and especially authored content. The default are 8 bits per
colour image formats with 256 levels of brightness – seems almost
archaic, but that’s the deal for most cases. Our computations during
the light simulation use 32 bit float, the range is large enough.

Rendering Accessories (Adam Celarek) 34

Post-processing
Tone mapping
 We compute radiance in 32 bit floating point precision
 However, most displays and image formats use an 8 bit unsigned

integer format
 Map high dynamic range (HDR) image data to 0 – 1 (8 bit) for

display
 We need to apply range compression
 Nowadays there are also 10 or even 12bit displays, which would

need different processing (not covered)
source: Thomas Auzinger, Rendering lecture 2019

So, tone mapping is about reducing the dynamic range from
our light simulation to a 0 – 1 range, that can then be
mapped to an 8 bit integer.

We need to compress the range.

And on a side note, there are 10 or even 12 bit displays today,

but these require different processing that probably happens
in special software or in the driver anyway and we will not
cover it. It is easy to output 16 or 32 linear float data for that
purpose.

Rendering Accessories (Adam Celarek) 35

Post-processing
Example
(tone mapped,
we don‘t know
how to do that
yet)

source: Thomas Auzinger, Rendering lecture 2019
(from http://dcgi.felk.cvut.cz/home/cadikm/tmo/)

Let’s take this image as an example.

It is tone mapped in some way. For the sake of the argument,

let’s assume that in the light **point** right here it has a
brightness of 35.5 (that’s a float value that could arise from
rendering). On that white piece of paper it could have a
brightness of, say, 1.2, and somewhere in the dark it could
be 0.1.

How to map that range to 0 – 1, so that we can then convert it

to 8 bit?

Rendering Accessories (Adam Celarek) 36

Post-processing
Example
Division by
maximum
Iout = Iin/max(Iin)

source: Thomas Auzinger, Rendering lecture 2019
(from http://dcgi.felk.cvut.cz/home/cadikm/tmo/)

One option could be to divide by the largest brightness value.

That is a valid method, and – don’t laugh, I used it at some

point in time. If the scene has a low dynamic range, that is
pretty OK. But it’s certainly not a good method in terms of
quality and stability.

Rendering Accessories (Adam Celarek) 37

Post-processing
Example
Clamp
Iout = min(Iin, 1)

source: Thomas Auzinger, Rendering lecture 2019
(from http://dcgi.felk.cvut.cz/home/cadikm/tmo/)

Our next attempt could be to clamp the image to a range of
0 – 1.

That is what often happens before tone mapping is
implemented. With most scenes that is not that bad either.

Rendering Accessories (Adam Celarek) 38

Post-processing
Example
Exponential
mapping
Iout = log(Iin)

source: Thomas Auzinger, Rendering lecture 2019
(from http://dcgi.felk.cvut.cz/home/cadikm/tmo/)

Taking the logarithm is a very basic tone mapper. I used it to
display some scientific data in another domain. Simple, but
not really proper – we would like to adjust the parameters,
give more light to the shadows etc..

Rendering Accessories (Adam Celarek) 39

Post-processing
Example
Reinhard
tone mapper

source: Thomas Auzinger, Rendering lecture 2019
(from http://dcgi.felk.cvut.cz/home/cadikm/tmo/)

And right here we now have a proper tone mapper – Reinhard!

Rendering Accessories (Adam Celarek) 40

Post-processing
Tone Mapper Taxonomy
 Global:

Mapping function is uniform on the whole image
 + Fast
 - But loss of detail

 Local:
Mapping function depends on the values of the pixels in the
neighbourhood of the currently mapped one.
 - Slow
 + Local contrast enhancement

source: Thomas Auzinger, Rendering lecture 2019

Before we continue, let me say, that there are global and local
tone mapping algorithms. The global ones apply the same
function to all pixels, while the local ones are applying
different parametrisations depending on the local
neighbourhood of a pixel.

Accordingly the local ones are slower, but they can retain more

details. We’ll see an example in two slides..

Rendering Accessories (Adam Celarek) 41

Post-processing
Reinhard Tone Mapper
 Reinhard et al., Photographic tone reproduction for digital

images, Siggraph 2002
 Widely used
 Global and local variant
 Listing processing steps would

be tiresome,many sources on
the internet (or the paper)

source: Thomas Auzinger, Rendering lecture 2019

The Reinhard tone mapper is widely used and there is a global
and local variant.

We will not cover the processing steps, it would be tedious and

you would have to look them up when you implement
anyway. Refer to the paper.

The goal of that process is to find a transfer function, like

shown here. The exact shape of that function depends on the
whole image in case of the global variant, and on the local
neighbourhood in case of the, well, local variant.

That shape is somewhat similar to a logarithm, hence

logarithms are also usable.

Rendering Accessories (Adam Celarek) 42

Post-processing

source: Thomas Auzinger, Rendering lecture 2019

Global Local
(from http://cybertron.cg.tu-berlin.de/pdci08/tonemapping/tone_mapping.html)

Here are the examples I promised.

On the left you see a global mapping and on the right a local

one.

If you look closely, you can see that some of the darker areas

on the right are darker. For instance next to the wood on the
roof ** point**. The window in the roof **point** is a bit – hm,
blurred, there is some sort of bloom. It’s not as crisp as on
the right.

Let’s zoom in a bit..

Rendering Accessories (Adam Celarek) 43

Post-processing

source: Thomas Auzinger, Rendering lecture 2019

Global Local
(from http://cybertron.cg.tu-berlin.de/pdci08/tonemapping/tone_mapping.html)

The global version is less crisp. Look at here **point saints and
arches** and the wooden parts **point** are clearly darker in
the local version.

Rendering Accessories (Adam Celarek) 44

Post-processing
Other Tone Mappers
 Bilateral filters

F. Durand and J. Dorsey, Fast bilateral filtering for the display of HDR images,
Siggraph 2002

 Gradient processing
Fattal et al., Gradient domain HDR compression, Siggraph 2002

 Etc..
Wikipedia lists over 20

source: Thomas Auzinger, Rendering lecture 2019

Reinhard is not the only tone mapper.

Here is a reading list, but there are more on Wikipedia.

Enough of tone mappers :)

Let’s turn our attention to gamma encoding, something slightly

different..

Rendering Accessories (Adam Celarek) 45

Post-processing
Gamma Encoding
 Human perception of brightness follows an approximate power function.
 Greater sensitivity to relative differences between darker tones.
 Therefore, gamma encoding is used to optimise the usage of bits when

storing or transmitting an image.

 It’s applied after tone mapping, , check online sources for more info.
 You might need to decode gamma when reading textures (most image

formats store gamma encoded, but light simulation needs linear
intensities)

source: Wikipedia

*read slide

Alright.

Rendering Accessories (Adam Celarek) 46

 Tone-mapping to map from HDR to
0.0 – 1.0 floating point.

 Gamma encoding for storage
 Not needed when using HDR

formats

source: own
work

Post-processing
Mission: Store or display renderings

To sum up,
...

Rendering Accessories (Adam Celarek) 47 source: own
work

Measuring Error
Mission: Know how good or bad we are

The next topic is measuring error.
And I know that it is a bit boring, but it’s important none the

less!
It is crucial to be able to compare algorithms, but we can do

even more as we will see.

The picture shows a former eucalyptus forest in Australia. The

error there was to put Koalas in the trees. Too many Koalas
and too few trees and of the wrong type.

Rendering Accessories (Adam Celarek) 48

Measuring Error
 Estimators estimate values – for instance the colour of a pixel
 Often denoted with a hat:
 Error of an estimator:

 Alternatively, amplitude of the error,
 relative error,
 or (mean) squared error for arrays of estimators.

 Real I not available, so use a high quality reference estimate

So estimators, well, they estimate values – for instance the colour of a pixel. As
such, they don’t give the real value, and therefore there is a certain error.
Many times it’s useful to compute the error before any post-processing, and
that’s what we use here.

Estimators are denoted with a hat (that is a general statistician thing). And the

error can be computed as the estimate - the real value. That is the absolute
error as opposed to the relative error which you can see below **point** (so
divided by the real value). This error **point** also contains a sign.
Sometimes the unsigned error, or amplitude error is computed **point**.

The nomenclature is fuzzy, and it is also called absolute error. When we want

to compute the error for the whole image, we can take the mean of all errors.
But in that case we have to compute the amplitude, or better square of the
error, otherwise the positive and negative errors would cancel out.

The real value I is usually not available, therefore high quality reference

estimates (also called ground truth) are used.

We will now see some examples of such errors

Rendering Accessories (Adam Celarek) 49

Measuring Error

Reference Absolute Error

On the left you see a high quality reference and on the right the
absolute error of a path tracing algorithm.

Rendering Accessories (Adam Celarek) 50

Measuring Error

Re
fe

re
nc

es
St

an
da

rd

de
vi

at
io

n

In here you can get an idea of the difference between absolute and
relative error.

The error shown is the standard deviation per pixel (something that

we’ll get into in the next few slides), but you can see the difference
anyways.

In the first example on the left, it seems at first that the relative error is

better, because in very bright areas we won’t see it anyways.

But on in the example on the right we can see, that the error can

become very large in dark areas. In fact, it’s needed to add an
epsilon to the reference, so that it doesn’t produce NaN.

But enough of that, let’s now look at...

Rendering Accessories (Adam Celarek) 51

Measuring Error
Classes of estimators
 Unbiased

 Biased but consistent

 Biased

… classes of estimators.

On the right you see plots of signed error (\hat{I} – I) against the number of

samples on the x-axis. You won’t see such plots in papers or websites, as
other error measures are used most of the time. But they are good for
visualising the concept here.

Unbiased estimators, like for instance Monte Carlo integration methods have

the expectation of the estimator equal to to true value **point**. The error
plot of a single estimate oscillates around zero and the amplitudes become
smaller as N increases **point**.

Biased but consistent estimators at no point have the expectation of the true

result. But the error becomes smaller with larger sample size. The estimator
converges to the ground truth. The error can be negative as well, this here
point is just an example.

And finally, there are biased algorithms, that never converge to the true

solution. That usually happens when you trade noise for bias. You can get a
nicer picture with less noise, that doesn’t match the physics of light for
instance. A typical example would be clamping the contribution (clamping
fireflies as you saw them in the first part of the path tracing), limiting the
recursion depth, or just not render certain effects, like for instance caustics.

Rendering Accessories (Adam Celarek) 52

Recap: Monte Carlo Integration
I, the integral of f(x) over the domain D is

But this is no estimator that we can use, all just
theoretical.

 => Law of large numbers

We are focusing on unbiased Monte Carlo Integration, and at this
point I would like to make a super brief recap.

I is the integral of f over a certain domain D. We can multiply f by p/p,

which is one. And turn that into an expectation using a sampling
strategy that creates samples according the the pdf p.

That is not an estimator as we have no procedure for estimation yet.

But we can use the law of large numbers to turn that into an
estimator.

The law of large numbers tells us, that the average of a ever

increasing number of samples X is the expectation.

When we apply that to our stochastic variable f over p, we get the

Monte Carlo integral estimator **point 1/n sum f/p

Rendering Accessories (Adam Celarek) 53

Measuring Error
Super Short Probability Primer
 Variance (variability)

 Variance of the following expression of uncorrelated X

 Central limit theorem (CLT)

Now we need another super short recap about probability –
and the variance in particular.

The variance of a stochastic variable gives us a measure of

how far spread out the samples will be. And you see two
equivalent methods to compute it.

The next result tells us, how the variance of a constant times

the sum or uncorrelated variables is computed. The constant
a can be squared and moved out, and the variance of a sum
is the same as the sum of variances. These equations are
taken from wikipedia :)

Finally, the central limit theorem. It is usually written in a slightly

different way, but this form is equivalent and more useful to
us. The average of a ever increasing number of samples of a
stochastic variable X tends towards a normal distribution with
expectation and variance given **point**.

Path Tracing II (Adam Celarek) 54

Measuring Error

Central limit theorem (CLT)

Our estimator

The Error

 and also tends towards a normal distribution.

I’ve put the CLT and our estimator next to each other. We see that the
estimator is pretty close to the CLT with the stochastic variable
being f over p. That means, that, in the limit, our estimator “I hat”, a
stochastic variable, becomes normal distributed.

Now let’s look at the error “I hat” minus “I”. We know that the

expectation of “I hat” is I, and so we can substitute it. Now we
quickly see, that the expectation of the error is 0. That’s logical,
since it’s unbiased.

We can also look at the variance of the error. We saw that the

variance of a sum of stochastic variables is the sum of variances.
So we replace that **point**, and the variance of the expectation (a
constant), is 0. Therefore the variance of the error is the variance of
the estimator.

And finally, without steps, the distribution of the error also tends

towards a normal distribution. You should be able to check that
without problems on your own.

Rendering Accessories (Adam Celarek) 55

Measuring Error
Monte Carlo estimator

Variance of that estimator

OK, the variance of the estimator is important. What can we
find out about it?

On top again the estimator (denoted with a hat). And, as said,

the estimator is a stochastic process, therefore the result is a
stochastic variable again.

We can compute the variance of that estimator. The result will

tell us, how far spread out the estimates will be. That means,
if we run the estimator several times, how far spread out the
results will be – at the same time, how far spread out the
error will be.

Using the equation from the probability primer before, we can

pull out the 1/N (it’ll become 1/N^2), and make it a sum of
variances.

Rendering Accessories (Adam Celarek) 56

Measuring Error
Monte Carlo estimator

Variance of that estimator

Variance of the estimator becomes smaller with a
larger N

Now, the Variance of f/p is a constant (a theoretical value, we
don’t know it, but we know that it exists). And a sum of N
values is N times the value.

So we can replace the sum by a multiplication with N.

And two of the N cancel out.

So the result here is, that the variance of the estimator (and the

error) is 1/N times the variance of a single sample.

Neat!

Rendering Accessories (Adam Celarek) 57

Measuring Error
 The distribution of error of a Monte Carlo estimator tends towards a

normal distribution as N increases.
 Its expectation is 0 (yes, because it‘s unbiased).
 The variance of the estimator is also the variance of the error.
 The variance is in strict relation with the number of samples:

double N half variance→

Variance, variance, what do we know about it?

To summarise..

The distribution of error of a Monte Carlo estimator tends

towards a normal distribution as N increases.

Its expectation is 0 (yes, because it’s unbiased).

The variance of the estimator is also the variance of the error.

And finally, the variance is in strict relation with the number of

samples, double N will result in half the variance.

Variance, variance, what do we know about it? Can we

compute it somehow?

Rendering Accessories (Adam Celarek) 58

Measuring Error
Importance sampling

We heard about importance sampling before, and we learned
that it can be used to reduce the variance / error. It would be
even better with MIS.

Can we compute the variance out of it?

Well, no. Or at least I’m not aware of a method to do that. It’s

kinda a dead end.

One of our researchers is working on a method to use the

information gathered by the path samples to get a better
estimate of the variance. But that is only an improvement to
what we’ll see now..

Rendering Accessories (Adam Celarek) 59

Measuring Error
We can measure sample variance easily, and derive an estimator for
the estimator variance!

We don‘t even need a reference solution!
It is even possible to do that „online“, which means that we do not need to
compute the average of all samples before we compute the variance.
Search for the Welford algorithm!
When we want to do that for path tracing, we would compute the per-pixel
sample variance.

We can measure the sample variance. It’s simple, you have a
bunch of values (the f over p), and compute their variance.

In order to get an estimate of the estimator variance, we need

to divide by N (so division by N squared in total).

This process does not even require a reference solution!

read the rest from the slide

Time for some examples..

Rendering Accessories (Adam Celarek) 60

Measuring Error

Standard deviation per
pixel

Bathroom scene source: own
work

On the left you see a rendering of a bathroom scene.

On the right there is the standard deviation per pixel.

In my opinion standard deviation is preferable because of the

linear scaling (variance has a quadratic scaling).

Rendering Accessories (Adam Celarek) 61

Measuring Error

Standard deviation per
pixel

Bottle scene source: own
work

Here we see another example.

And we can clearly identify that the caustic is problematic for

the path tracing algorithm – because the standard deviation
(or variance) is high.

Alright, what can we do with that information? ...

Rendering Accessories (Adam Celarek) 62

Measuring Error

Standard deviation per
pixel

Bottle scene

More samples here

source: own
work

One thing: we know that the error in that area is large. But we
also know that doubling the number of samples reduces the
estimator variance by half.

Erm, so through more samples at these problematic areas!

This is called adaptive sampling. And there are many methods

to do that in intelligent ways, but that would be too much for
this lecture. Look for papers on your own :)

Rendering Accessories (Adam Celarek) 63

Measuring Error

Standard deviation per
pixel

Bottle scene

More smoothing here

source: own
work

Another method to combat noise in renderings is smoothing.
Adaptive smoothing is used often, which means that edges
are not blurred for instance. Most noise reduction methods
are biased. however, a little bit of bias is often better than a
noisy image.

If we know that there is a lot of error in a certain part – in other

words objectionable noise – we can apply more smoothing.
This would prevent unnecessary smoothing of diffuse
textures for instance.

And finally...

Rendering Accessories (Adam Celarek) 64

Measuring Error

source: own
work

We can compare different algorithms.

On the left path tracing, it contains a lot of error in the caustic.

Bidirectional path tracing on the right shows less error in the

caustic, but it looks like there is more error or noise in the
refractions inside the bottle.

So generally, if you develop a new algorithm, it is good to know

its strengths and weaknesses, and this is a good method to
do that. In my opinion better than comparing ground truth to
real images like we saw in the intro.

Rendering Accessories (Adam Celarek) 65

Measuring Error
What if we want a metric for the whole image (e.g., for ranking
algorithms):
 Mean square error (MSE), per pixel mean of (rendering - reference)2

 Very popular in literature
 many variation (relative to brightness, mean absolute error, root of MSE to

be linear..)
 However, sensitive to outliers

 I‘m advocating to use root mean variance
and also report the standard deviation of it.

Finally (now for real), we often want to rank algorithms. E.g., say that
algorithm a is better than b according to some metric.

Literature often uses Mean square error to do that. That is a per pixel

mean of the squared error between a rendering and a ground truth.

There are many variations of that, for instance computing the error

relative to the brightness of the reference, or computing mean
absolute error, which weighs outliers less, or computing root mean
square error, which is linear like standard deviation.

All these methods are sensitive to outliers (fireflies in the case of path

tracing). **Point** here you see the RMSE error plotted over
rendering time. The jumps are outliers, and so it would be hard to
choose a fair rendering time for comparison.

So I’m advocating to use the root of mean variance, where the

variance is estimated per pixel.

Rendering Accessories (Adam Celarek) 66

Measuring Error
Reading
 Celarek (2017),

Quantifying the Convergence of Light-Transport Algorithm
s

 Celarek (2019),
Quantifying the Error of Light Transport Algorithms

Here are some reading links

The first one is a diploma thesis and the second one a paper.
Both roughly cover the same methods, which also includes a

plot of error over frequencies, but the first one being more
extensive.

https://www.cg.tuwien.ac.at/research/publications/2017/CELAREK-2017-QCL/
https://www.cg.tuwien.ac.at/research/publications/2017/CELAREK-2017-QCL/
https://www.cg.tuwien.ac.at/research/publications/2019/celarek_adam-2019-qelta/

Rendering Accessories (Adam Celarek) 67

 Simply variance or standard
deviation (for unbiased algorithms)

 Adaptive sampling
 Filtering / smoothing noise
 Comparisons

source: own
work

Measuring Error
Mission: Know how good or bad we are

And here comes the summary slide:

We have our mission accomplished, we know how to judge the

quality of our rendering work.

For unbiased algorithms like path tracing that is simply

measuring the variance or standard deviation.

We can use that knowledge to through more samples at

problematic areas, smooth out noise in that areas and for
comparisons between algorithms and sampling strategies.

Rendering Accessories (Adam Celarek) 68 source: own
work

Stratification and sampling patterns
Mission: Less noise

I don’t remember where I took the picture, probably
somewhere in France. It’s a facade, looks a bit like cosine
hemisphere samples projected on the tangent plane ;)

–
We are now making a jump from looking at the result of

rendering, back to the basic concept of integration and it’s
implementation.

Sampling patterns are a detail of Monte Carlo integration, so
this is an addendum to the Monte Carlo and sampling
lectures.

Rendering Accessories (Adam Celarek) 69

Bad random numbers cause noise

First I’ll explain the problem using a 1d example.

Rendering Accessories (Adam Celarek) 70

Bad random numbers cause noise

Let’s assume equidistant samples, which is basically a
trapezoidal integration rule. On the right side you see the
sum of the sample values. Dividing it by the number of
samples would give us the integral of the blue function.

Rendering Accessories (Adam Celarek) 71

Bad random numbers cause noise

But since we are doing Monte Carlo, the samples will not be
equidistant. Sometimes they will cluster in one area,

Rendering Accessories (Adam Celarek) 72

Bad random numbers cause noise

And sometimes in another.

Rendering Accessories (Adam Celarek) 73

Bad random numbers cause noise

Which gives different results.

This is variance that can’t really be explained by looking at the
probability densities. I mean yes, you introduce variance by
the fact that there is a PDF, and sampling and everything, but
that variance feels unnecessarily excessive.

We want randomness, but, that is too much..

Obviously, I wouldn’t bring this up without a solution^^

Rendering Accessories (Adam Celarek) 74

Bad random numbers cause noise

Let’s divide the integration domain into N equidistant areas and
take one random sample in each

Rendering Accessories (Adam Celarek) 75

Bad random numbers cause noise

Like here..

This is called stratification, or stratified samples.

The samples are still random, but more regular!

Rendering Accessories (Adam Celarek) 76

Bad random numbers cause noise

When we compare the results, the stratified variant has a
smaller error.

Rendering Accessories (Adam Celarek) 77

Stratified sampling
With random uniform sampling, we can get unlucky,
e.g. many samples clump in one area.
However, we can subdivide the integration domain
using a grid. Each grid cell is called a stratum.
Then, randomly select a stratum from the ones with
lowest number of samples, and pick a new random
sample in it.
We are working in the primary sampling domain,
before importance sampling. Therefore this generates
more regular samples even for things like a glossy
BSDF.

Here we have another example, but in 2d. On the top it’s
random sampling and you can see at the bottom that the
samples are more regular, when we use stratification.

Well, well, but let’s think whether this can scale to the 4, 6, 10,
and more dimensions of a path-space integral…

The curse of dimensionality kicks in again – we can’t have one
sample per grid cell, same as with the trapezoidal rule.

However, there is a simple solution. From the cells with least
number of samples, pick one randomly and and sample in it.
That way the cells stay relatively balanced (the maximum
difference of samples per cell is 1).

This approach should be implemented directly in the random
number generator, before using these numbers in BSDF
samples etc., so before any warping is applied. The benefits
translate to the the warped distribution as well. The domain
before warping is called the primary sample domain.

Rendering Accessories (Adam Celarek) 78

Low-Discrepancy Series
 Replace the built-in RNG with a sample generation algorithm

that sacrifices randomness for good spatial distribution
 In other words: instead of stratification, use an „hacked“

random number generator, that produces stratified samples
in the first place
 Numbers are not random, it’s a simple algorithm. That’s why it’s

called Quasi Monte Carlo
 Can cause artifacts if it’s not done right
 E.g., Halton Sequence Default RNG 2,3 Halton Sequence

So
ur

ce
: W

ik
ip

ed
ia

, U
se

r J
he

al
d

(C
C-

BY
-

SA
-3

.0
)

Low-discrepancy series are a way to achieve uniform sampling
without using stratification.

Basically, the random number generator is replaced with an
algorithm that generates samples according to a
mathematical formula, guaranteeing a relatively uniform
distribution at all sample counts.

We kinda hack the random number generator to produce
stratified samples ;)

The numbers are not random, hence Monte Carlo turns into
Quasi Monte Carlo.

The Halton sequence in the picture is one example for such an
algorithm. The whole thing is a bit tricky to get right, best
follow the course book, we have references at the end of this
section.

Rendering Accessories (Adam Celarek) 79

Quasi Monte Carlo
 Often applied only to the first few dimensions (e.g. direction of the first

bounce, surface sampling of a light)
 In fact, having the same number of samples for each pixel is already stratified

sampling. Could choose position in the pixel plane randomly.
 Pointless in higher dimensions, because it’s cursed
 Most of the error often in high dimensions (e.g. caustics, deep refractions in glass).

 Convergence rate for low dimensions can be actually better than O(1/N)
[Pilleboue, Singh et al.: Variance Analysis for Monte Carlo Integration]

 Simpson’s and other higher order quadrature rules also have a better convergence
rate

 They also don’t work for higher dimensions

Quasi Monte Carlo is often applied only to the first few
dimensions of the integral, for example the direction of the
first bounce, surface samples of a light etc.

In fact, using the same number of samples per pixel is already
stratification!

Any of these methods become pointless in higher dimensions,
because sampling will be very sparse.

Worse, in many scenes most of the error is in higher
dimensions, for example caustics, deep refractions in glass
and so on. However, it’s still used, because it’s cheep, and
diffuse surfaces are cleaner.

It’s also a bit funny. Previously we learned, that the
convergence rate is 1/N. Using sample patterns can be even
better than 1/N, that is, error in low dimensions converges
asymptotically quicker than in high dimensions! That’s similar
to Simpson’s and other higher order quadrature rules, and
they also don’t work for higher dimensions.

Rendering Accessories (Adam Celarek) 80

Quasi Monte Carlo
Reading
 Pharr, et al., Physically Based Rendering (Chapter 13.8 and

7.4)
 SIGGRAPH 2012 Course: Advanced (Quasi-) Monte Carlo

Methods for Image Synthesis
 Pilleboue, Singh et al.: Variance Analysis for Monte Carlo

Integration

Here are some reading links

Check our course book again. There is also a SIGGRAPH

course. And the paper by Pilleboue, singh et al. shows a way
to analyse sampling patterns, and gives exact numbers on
convergence.

https://www.pbr-book.org/3ed-2018/Monte_Carlo_Integration/Careful_Sample_Placement
https://sites.google.com/site/qmcrendering/

Rendering Accessories (Adam Celarek) 81 source: own
work

Stratification and sampling patterns
Mission: Less noise

 Making samples more regular
 Convergence rate can be better than O(1/N)

That concludes our section about sampling patterns.
We learned that having regular samples reduces error in low

dimensions.

Rendering Accessories (Adam Celarek) 82

That’s It for Today
 Sampling theory and filtering
 Parallelisation
 Post-processing
 Measuring Error
 Stratification and sampling patterns

source: own
work

That’s it for today

We covered a whole bunch of topics :)

I wanted to include that image in my diploma thesis, a glass of

water with an oat drink, which shows participating media, and
a nice caustic.

Thanks for your attention...

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82

