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Rendering: Importance Sampling

Bernhard Kerbl

Research Division of Computer Graphics
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With slides based on material by Jaakko Lehtinen, used with permission

Welcome back to this lecture on Rendering. Our topic
today is an extremely important one, that is, Importance
Sampling
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Today’s Goal

Improve the efficiency of Monte Carlo with importance sampling

Understand how we can produce custom distributions in simple 1D, 
2D and 3D domains by warping simple, uniform random variables

Learn how we can transform samples between cartesian and non-
cartesian domains (e.g., from polar to XYZ vectors)

Understand how we can incorporate these steps into path tracing
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Importance sampling will enable us to significantly raise
the effectiveness of Monte Carlo integration, compared
to how we did it up until now. 

Until now, we used only uniform sampling for the
hemisphere. We gave you a few simple functions for
generating and compensating for samples on the
hemisphere surface. 

This time, not only are we going to derive how these
functions came to be, we are also going to learn about
the mathematical background and the tools that we
need so that we can derive arbitrary sampling
strategies, because some of them will be much better
than uniform sampling. We will show you how to do this
in 1D, 2D and even 3D on the hemisphere, and all that
we will need as input will be simple random variables, 
that every modern computer can produce. Since the
hemisphere is a special domain, we will also have to



‹Nr.›

look at how we can come up with sampling strategies that
achieve a particular distribution on these non-trivial domains. 
And lastly, after sitting through all the related math, you will 
quickly see how this ties nicely into our path tracer. 
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Importance Sampling

All these things sound tedious… why do we need to create samples 
from arbitrary distributions? In different domains even?

When we sample, e.g., the hemisphere, we can use any PDF we like

We know the selection of the proper as importance sampling
Rendering – Importance Sampling 3

𝑓(𝑥)

𝑝(𝑥)

𝑓(𝑥)

𝑝(𝑥)

Bad sampling (high variance) Importance sampling (low variance)

No beating around the bush, there will be a wall of math
between you and the end of this lecture. But we cannot
simply stick with uniform sampling, because choosing
appropriate sampling distributions is a key ingredient to
make Monte Carlo integration perform better. 

Whenever we try to integrate a function over a domain, 
such as the hemisphere, we are free to choose the
sample PDF, or distribution, as long as we can make
samples in the domain that follow this distribution. And 
ideally, if we have the choice, we will try to make an 
informed decision, so that the sample distribution
mimics the function itself as closley as possible. 
Becuase when we do that, that is what we call
importance sampling, and we already derived that it
has immense benefits for the estimation quality of
Monte Carlo.
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Importance Sampling

Remember: if possible, you want a PDF that mimics !
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In the Monte Carlo lecture, we saw that the variance of 
the Monte Carlo estimator for integrating a function f(x) 
is lowest, actually 0, when the sample distribution PDF, 
p(x), is proportional to the actual function we are trying 
to integrate. Lower variance means less noise, and the 
faster we get rid of the noise in our renderings, the 
faster the image quality improves. 

Now, if we knew what f(x) was and could normalize it, 
then we could just use that and have an optimal 
distribution. But this is a paradox: if we were able to 
normalize f(x), that would imply we know its definite 
integral. If we knew the definite integral of f(x), then we 
wouldn’t need Monte Carlo to approximate it in the first 
place. To illustrate this for our special case, it means if 
we had perfect and total knowledge of how light 
bounces through a scene, we wouldn’t need path 
tracing to come up with an image. But in our case and 
many others, this perfect knowledge of f(x) is 
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unobtainable. However, we can usually make good 
approximations, and find distributions p(x) that are 
reasonably close to f(x). Let’s see an example of how this 
could work. 
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Let’s look at an application for importance sampling in practice

Consider a target function 

You want to compute its integral, 
but have no closed-form solution 
or can only measure ad-hoc? 

Clearly, a case for Monte Carlo

Monte Carlo Integration with Importance Sampling
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Here‘s an unknown function, f(x). We want to compute
ist integral in a certain range, but we have no closed-
form solution. What can we do about it?

Clearly, this is a case for Monte Carlo. With any
reasonable sampling strategy, the more samples we
will throw at it, the better our approximation will get. 
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If we take another look, the shape of this function seems familiar…

It appears to be quite close to ଶ!

We already know that uniform 
sampling of is only one way 
to do Monte Carlo integration…

Let’s try instead with ଶ

Monte Carlo Integration with Importance Sampling
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But hold on, the shape of this function actually looks
quite familiar. There are a few fluctuations in it, but ist 
base shape is actually VERY close to x squared.

We already did monte carlo integration with uniform 
sampling, so we may now try our hand at using
something else. WE are going to go ahead, and try to
compute the integral of the function in two different 
ways: once with uniform sampling and once with a 
strategy where samples are distributed proportionally to
x squared. Let‘s see how the versions compare.
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Both methods converge
towards the same result

But the importance-sampled
method converges quicker!

Let’s see what the code
behind it looks like..

Uniform vs Importance Sampling (Python)
integrate_mc(0, 100, N, f, p_uniform, gen_uniform)    vs   integrate_mc(0, 100, N, f, p_x2, gen_x2) 
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Here we see, up top, the two invocations that we did in 
python to launch the process. Both methods integrate
in the range from 0 to 100, and both get to use a 
varying number of samples to do so. On the right, we
plot what result the two methods come to with each
given number of samples N. 

Clearly, both methods converge to the same result, 
around 1700. But the method that uses importance
sampling got there much much quicker. Imagine, how
much we could improve our rendering procedures if we
could also make our Monte Carlo integration that much
more effective!

Let‘s see how we did that in code, and maybe this is all 
straight forward and we can reproduce something
similar immediately…
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Uniform vs Importance Sampling (Python)
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integrate_mc(0, 100, N, f, p_uniform, gen_uniform)    vs   integrate_mc(0, 100, N, f, p_x2, gen_x2) 

def integrate_mc(a: float, b: float, N: int, f, p, gen):
X = gen(a, b, N)
estimates = f(X)/p(X, a, b)
result = estimates.sum() / N
return result

def p_uniform(x, a: float, b: float):
return 1/(b-a)

def p_x2(x, a: float, b: float):
b3 = ((b**3)/3)
a3 = ((a**3)/3)
return x**2/(b3-a3)

def gen_uniform(a: float, b: float, N: int):
xi = np.random.rand(N)
return xi * (b - a) + a

def gen_x2(a: float, b: float, N: int):
xi = np.random.rand(N)
b3 = (b**3)
a3 = (a**3)
return (a3+xi*(b3-a3))**(1.0/3.0)

By the end of the day, this
should make sense to you!

Ok, the main loop looks ok, this is just a basic monte
carlo integration procedure, which takes a method for
generating samples and sums them up, weighted by
the PDF and eventually computes a mean. We saw this
quite a few times already. But whats interesting are the
functions we are passing in for sampling according to x 
squared. Those are the functions p_x2 and gen_x2 
here, which take uniform random variables and the
targeted integration interval as parameters.

And… they don‘t look straightforward. The 
computations in them are not too complicated, but the
question is, why do we cube the ranges of the
integration interval, why the division by 3, why a cube
root in the generation function? These things look
somewhat arbitrary. And in comparison, x^2 is a rather
simple distribution, so what might the sample 



‹Nr.›

generators for other functions look like? The good news is
that, if you pay close attention to the methods we describe in 
the first half of this lecture, you should be able to come up
with functions like these, and much more complicated ones, 
yourself, which gives you the skills to apply your own 
importance sampling solutions in the future. 
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Before, we did uniform hemisphere sampling, and it worked

But perhaps we can also use
importance sampling here?

Can we perhaps importance-sample 
the rendering equation?

The hemisphere is a peculiar domain. Sampling it with arbitrary 
distributions is a little bit more complex…

Importance Sampling on the Hemisphere
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Once we know how to do this, we are going to 
approach the hemisphere. It is a little special, so first of 
all, we will have to analyze this domain and see how we 
can integrate over its surface. For those who were 
wondering before, we will also derive the solution for 
uniform hemisphere sampling in the process. 

But imagine what we could do if we unlock importance 
sampling on the hemisphere as well. Perhaps we could 
try to importance sample the rendering equation itself 
and immediately get clean, noiseless images with just a 
few samples? We will talk about what exactly is and 
isn’t possible when we get there. But, just as a heads-
up, we will be able to clearly improve the quality of our 
renderings in our path tracer from. The fact of the 
matter is that, the solution to do this will only involve a 
few lines of code, so if you don’t care about the 
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background or about understanding the math that makes 
importance sampling tick, we will actually provide you with a 
shortcut to the corresponding solutions in the second half of 
this lecture.

But we still hope that you are willing to also pay attention to 
the theoretical background in case you ever need to dig 
deeper than importance sampling only the most basic 
functions.

Ok, let’s get to it!
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Today’s Roadmap
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What exactly are CDFs and PDFs?
What is the inversion method?

How to sample arbitrary functions?
What’s the fastest way to cosine-
weighted hemisphere sampling?

The Inversion 
Method

Sampling the 
Unit Disk

Required 
Background 
(CDF, PDF)

Importance Sampling 
for the Diffuse BRDF

Sampling the 
Hemisphere

Importance 
Sampling Unlocked!

Sampling the Unit Disk 2: 
Crossing Domains

Here we have today’s roadmap. We will begin by 
looking at some of the background that we need, talk 
about the PDF again and related concepts, which will 
lead us directly to the inversion method. Once we have 
seen how the inversion method can be used to make 
samples from arbitrary distributions, we will try to make 
them not only for 1D and 2D functions, but we will also 
see how we can sample a more demanding domain, 
that is the unit disk. We will do this in two ways, once 
with geometric reasoning and once with the formal 
method for transforming samples between cartesian 
and non-cartesian domains. After we have mastered 
the unit disk, we will dare to move on to the hemisphere 
and derive the solution for uniform sampling in this new 
domain. Finally, we will combine the inversion method 
with the transformation of samples to achieve 
importance sampling on the hemisphere, and we will 
look at a concrete example for exploiting it in a path 
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tracer to improve the image quality. 
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Today’s Roadmap
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What exactly are CDFs and PDFs?
What is the inversion method?

How to sample arbitrary functions?
What’s the fastest way to cosine-
weighted hemisphere sampling?

The Inversion 
Method

Sampling the 
Unit Disk

Required 
Background 
(CDF, PDF)

Importance Sampling 
for the Diffuse BRDF

Sampling the 
Hemisphere

Sampling the Unit Disk 2: 
Crossing Domains

Importance 
Sampling Unlocked!

First off, we will look at some basic concepts that we 
need, then we will introduce the CDF, the cumulative 
distribution function, and drill down into the formal 
definition of the PDF which have already been using. 
But before we can do this, let’s start with a quick recap 
of random variables. 
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Discrete Random Variables

In daily life, we are mostly confronted with discrete random results
A coin flip
Toss of a die
Cards in a deck

Each possible outcome of a random variable is associated with a 
specific probability . Probabilities must sum up to 

E.g., a fair die: and ଵ ଶ ଺
ଵ

଺

Rendering – Monte Carlo Integration I 12
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Continuous Random Variables

A continuous random variable with a given range can 
assume any value ௜ that fulfills ௜

Working with continuous variables generalizes the methodology for 
many complex evaluations that depend on probability theory

There are infinitely many possible outcomes and, consequently, 
the observation of any specific event has with vanishing probability

How can we find the probabilities for continuous variables?[2]
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Cumulative Distribution Function (CDF)

For continuous variables, we cannot assign probabilities to values

The cumulative distribution function (CDF) lets us compute the 
probability of a variable taking on a value in a specified range [2]

We use notation ௑ for the CDF of ’s distribution, which yields 
the probability of taking on any value 
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0 1

If 𝑋 can take on any value with equal probability, what is the probability of 𝑋 = 0.5?

?
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௑ ௑  ௜

Read as: 

Example: uniform variable 
generates values in range [0, 1):

𝑃క 𝑥 = 𝑥

𝑃క 0.75 − Pక 0. 5 = 0.25

Probability for a Range with CDF

Rendering – Importance Sampling 15

𝑦

𝑥0 1

1

𝑃(𝑥)
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Properties of the CDF

CDF is bounded by [0, 1] and monotonic increasing
Probability of no outcome is 0, the probability of some outcome is 1
Die: Rolling a number between 1 and 6 cannot be less probable 
than rolling a number between 1 and 5 

CDFs can be applied for discrete 
and continuous random variables

How do we compute the CDF?

Rendering – Importance Sampling 16

𝑦

𝑥0

1
𝑃(𝑥)
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Determine the limits of your variable 
For each outcome, find its probability ௔ ௕

The CDF of that variable is then a function ௑ ௜
௫
௜ୀ௔

Computing the CDF for Discrete Random Variables
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𝑥0

1

𝑝଴ 𝑝଴ 𝑝଴ 𝑝଴

𝑝ଵ 𝑝ଵ 𝑝ଵ

𝑝ଷ

𝑝ଶ𝑝ଶ

𝑥0

1

𝑝଴ 𝑝ଵ

𝑝ଷ
𝑝ଶ

Outcome Probabilities Cumulated Probabilities (CDF)
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Probability Density Function (PDF)

The PDF is the derivative of the CDF : ௗ௉(௫)

ௗ௫

For a PDF , and ௕

௔

must be positive everywhere: a negative value would mean we 
can find such that ௕

௔
has a negative probability

௑ can be understood as the relative probability of ௜

I.e., if ௑ ௑ , then ௜ is twice as likely as ௜

Rendering – Importance Sampling 18
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Notes about the PDF

Notation may look like probability, but PDF values can be >1!

For both discrete and continuous variables, we can reference
“ ” to describe their distribution 

Summary: for a continuous variable with a known, integrable PDF, 
we can find the CDF and probabilities of landing in a given range

…is this actually helpful?

Rendering – Importance Sampling 19
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Today’s Roadmap
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What exactly are CDFs and PDFs?
What is the inversion method?

How to sample arbitrary functions?
What’s the fastest way to cosine-
weighted hemisphere sampling?

The Inversion 
Method

Sampling the 
Unit Disk

Required 
Background 
(CDF, PDF)

Importance Sampling 
for the Diffuse BRDF

Sampling the 
Hemisphere

Importance 
Sampling Unlocked!

Sampling the Unit Disk 2: 
Crossing Domains

This brings us to our next big topic in today’s agenda, 
that is, the inversion method. We will see how 
incredibly useful the our new-found knowledge about 
the CDF is and how we can use the inversion method 
to exploit it and let us perform importance sampling 
with a wide range of target functions in 1D and 2D. 
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Creating Variables with Custom Distributions

By discovering the CDF, we have found a powerful new tool

The function is often invertible: this means, we can generate 
random variables with a desired distribution!

Rationale: Since the CDF is monotonic increasing, there is a unique 
value of ௑ for every with ௑

More informally, if we plot a 1D CDF, any value that can take on 
has a unique, corresponding coordinate on the -axis

Rendering – Importance Sampling 21
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Basic Sampling with Canonical Random Variables

We want to generate samples for a custom distribution from a 
random input that we can easily obtain in a computer environment

Our assumed input is the canonical random variable 
continuous (i.e., a real data type)
with uniform distribution
in the range [0, 1)

Goal: warp samples of to ones distributed according to some 

Rendering – Importance Sampling 22
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The Canonical Random Variable

Our assumed default input variable

PDF for is in range and everywhere else

CDF for is linear

Important property: we have equality ௜ ௜

Rendering – Importance Sampling 23
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The Inversion Method

For discrete variables: we draw and iterate event probabilities
When their sum first surpasses , we have found ௜

For continuous variables: exploit ௑’s bijectivity and use its inverse!
We can use canonic to compute ௜ ௑

ିଵ according to ௑
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𝜉

0

1
𝑃(𝑥)

𝑋௜

𝜉

0

1

𝑋௜

𝑝଴ 𝑝଴ 𝑝଴ 𝑝଴

𝑝ଵ 𝑝ଵ 𝑝ଵ

𝑝ଷ

𝑝ଶ𝑝ଶ

And we can exploit this property in order to achieve 
what we wanted to do before, namely to simulate a 
random variable with a given PDF/CDF. And the way to 
do that is by using a process called the Inversion 
Method. If we have a random variable X with some 
distribution, we can draw a sample from our canonical 
random vraible XI and consider it as the output of X’s 
CDF to find the value of X that would have generated it. 
In the discrete case, we can simply iterate over the 
outcome probabilities of X and stop at the event where 
their sum surpasses our sample of XI. For the 
continuous case, we can use the bijectivity of the CDF 
and take its inverse. So the value of random variable X 
that would produce the cumulative probability given by 
our sample Xi is found via the inverse of X’s CDF.
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Example: Exponential Distribution

Used mainly for estimation of time intervals between two events

The probability of a value decreases exponentially

Needs additional parameter , often called rate parameter

We can find its PDF and CDF in most probability text books
𝑝 𝑥, 𝜆 = 𝜆𝑒ିఒ

𝑃 𝑥, 𝜆 = 1 − eିఒ௫, 𝑃ିଵ 𝑥ᇱ, 𝜆 = −
୪୭୥(ଵି௫)

ఒ

Rendering – Importance Sampling 25
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Warping Uniform To Exponential Distribution
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def warp_expx(X, lambda: float):
return –np.log(1.0 – X) / lambda

LAMBDA = 0.5

samples_uniform = np.random.rand(N)
samples_exp_ref = np.random.exponential(1.0/LAMBDA, N)
samples_exp_gen = warp_expx(samples_uniform, LAMBDA)

h1, h2, h3 = histograms(0.0, 1.0, 20, samples_uniform, samples_exp_ref, samples_exp_gen)

show_histogram(h1)
show_histogram(h2)
show_histogram(h3)

What we are doing here, is, we are basically putting 
into practice what we just saw, we are computing the 
inverse of the CDF and thereby simulating an 
exponential distribution by warping the outputs of a 
uniform distribution. 

And in order to evaluate this, we are going to write a 
simple python program that uses two different arrays of 
random numbers from the numpy library, one with with
an exponential distribution for reference and one with 
uniform distribution.

And what we are trying to do here is, we record all the 
sample from the uniform and the reference distribution 
so we can plot them later and, last but not least, we 
also make a new array of values from the result we get 
when we warp the uniform samples with the inverse of 
the CDF which we computed on the last slide.
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Histograms of generated samples

Warping Uniform To Exponential Distribution
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𝑋௜ = 𝑃௑
ିଵ 𝜉௜

𝜉௜

𝑅௜

𝑋௜
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Mix Multiple Random Variables

Let’s add another variable and combine them for 2D output

In doing so, we are extending our sampling domain

The sampling domain is defined by
The number of variables, and
Their respective ranges

Think of the domain as a space with the axes representing variables
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So now that we saw that we can simulate individual 
random variables form their PDFS, lets move to 2D. We 
can generate some basic 2D distributions by combining 
the output of two random variables. By doing so, we 
are extending our sampling “domain”. When we talk 
about multidimensional sampling, the domain defines 
the number of random variables we are using and their 
respective range. For the sake of visualization, we will 
plot the domain as a space where the axes represent 
the individual variables.
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Joint PDF

If multiple variables are in a domain, the joint PDF probability 
density of a given point in that domain depends on all of them

In the simplest case, with independent variables and , the joint 
PDF of their shared domain PDF is simply ௑ ௒

We can sample independent variables in a domain by computing 
and sampling the inverse of their respective CDFs, separately  
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In a domain with multiple random variables, every 
possible outcome is a combination of the values that 
the random variables take on. Therefore, we define the 
“joint” PDF for any such combination that defines a 
point in this domain. In the simplest case, we have 
independent variables X and Y, and if they are 
independent, then the joint PDF for a point in their 
shared domain is simply the product of the separate 
PDFs for each coordinate. In this case, we can 
simulate a 2D random variable by computing the 
inverse of their individual CDFS and using the inversion 
methods on them with outputs from two canonical 
random variables.
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2D with For , use గ

ଶ
and 

௑

௑
ିଵ ିଵ

Inversion Method Examples in 2D
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def gen_cosx(a: float, b: float, N: int):
xi = np.random.rand(N)
return np.arcsin(xi)

def p_cosx(x, a: float, b: float):
return np.cos(x)

X_i = gen_cosx(0, 1, 1000)
plot(X_i, np.random.rand(1000))

Here we see an example where we use a random 
variable for the Y axis that mimics the canonical 
random variable and another for the X axis where the 
probability is distributed according to the cosine of x. 
Since the cosine is 1 for input 0 and 1 for input pi/2, we 
can see that the density of the samples decreases with 
increasing x. The sampling of this 2D variable is 
achieved by inverting their CDFs separately and 
warping samples from two canonical random variables, 
as shown in the code below.
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and in range 

For both variables, ଶ ିଵ

Inversion Method Examples in 2D
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def gen_2v(a: float, b: float, N: int):
xi = np.random.rand(N)
return np.sqrt(xi)

def p_2v(v, a: float, b: float):
return 2*v

X_i = gen_2v(0, 1, 1000)
Y_i = gen_2v(0, 1, 1000)
plot(X_i, Y_i)

Here we have another small example with variables X 
and Y both in the range from 0 to 1, and for both 
variables we are using the same linear PDF.

Again, we can sample this distribution by computing the 
CDF, inverting it and using samples from different 
canonical random variables as input. It may be difficult 
to tell visually, but the joint PDF tells us that there are 
approximately 4 times as many samples in the upper 
right corner than there are at the center of the plot.
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Let’s pick a slow-growing portion of the distribution function
Compared to cumulative density only doubles in 

Choosing a Different Range
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𝑝 𝑥 = 2𝑥 𝑃 𝑥 = 𝑥ଶ (𝑙𝑜𝑔𝑝𝑙𝑜𝑡)

So let’s do a little variation on the last setup, and 
instead of having variables in the range from 0 to 1, we 
actually want them to replicate the behavior of a linear 
PDF in the range from 2 to 4. This means that we 
would see a smaller change in the density, because the 
relative growth of the CDF is much smaller.
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Try and in range 

For both variables, ଶ ିଵ

Nothing happens.

How can we adapt variable ranges?

Something is missing!

Inversion Method Examples in 2D
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So if we apply the same recipe as before… nothing 
happens. If we plot a higher range, we see that the 
samples are the same as before, which is no surprise 
because our CDF and inverse CDF are also identical. 
So apparently we are missing some steps if we want to 
applyt the inversion method to arbitrary setups. Let’s 
look at the missing steps right now. 
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Consider a given range from to for a variable and a candidate 
PDF with the desired distribution shape

If ௕

௔
, is not a valid PDF for this variable

The probability that the result is one of all possible results 

To fix this, we compute the proportionality constant ௕

௔

and compute a valid ி(௫)

௖
and ௙(௫)

௖

Restricting the PDF / CDF
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First, what we need is to ensure that we enforce the 
necessary on the PDF and CDF we are using 
restrictions. For now, let’s talk about the distribution we 
want our variable to have as the PDF CANDIDATE f(x). 
Remember that we said that a CDF is bounded from 
above by 1. That means that, if we have a random 
variable with a specified range, the integral of the PDF 
over that range must equal to 1. If this is not the case, it 
corresponds to saying that the probability of the 
variables outcome being one of all possible outcomes 
is not 100%, which is a paradox. To fix this, we can 
compute proportionality constant by finding the value 
that f(x) integrates to over the full range and divide 
f(x)’s antiderivative by it to get the CDF. This ensures 
that CDF adheres to its necessary restrictions while 
making the PDF p(x) proportional to the candidate 
function f(x).
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For range where , we add
a constant offset 

Try and again

We compute ௒ ௑
ସ

ଶ
and add ସ

ଵଶ
to get: 

௩మିସ

ଵଶ
ିଵ , ଶ௩

ଵଶ

Restricting the PDF / CDF
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If we are looking at ranges that do not start with 0, we 
also need to add a constant offset to the CDF. If our 
variable ranges from a to b, then we subtract the value 
that the CDF would produce for input a. This is valid 
because we defined the CDF to be the PDFs 
antiderivative, and remember that antiderivatives can 
include arbitrary constant factors, because those fall 
away when we differentiate. With this in mind we try our 
setup from before again, but this time apply the 
proportionality constant and the correct offset. As we 
can see in the updated plot, this now produces samples 
with the expected growth in density and in the expected 
range.
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The Inversion Method, Completed

Find a candidate function with the desired distribution shape

Choose the range in you want your variable to imitate

Determine the indefinite integral 

Compute the proportionality constant 

The CDF for the new variable is ௑
ி ௫ ିி(௔)

௖

Compute the inverse of the CDF ௑
ିଵ

Use ௑
ିଵ to warp the samples of a canonic random variable 

so that they are distributed with ௙(௫)

௖
in the range 
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So finally, we have the inversion method for simulating 
random variables with custom distributions completed. 
To summarize, let’s go over the individual steps we 
need to do once more.

First, we identify a candidate function f(x) that we want 
for the distribution of values in our random variable,

Second we choose the range inside the candidate 
function that our variables distribution should imitate

We then compute the indefinite integral, or antiderivate
of the candidate PDF to get a candidate CDF

We find the proportionality constant and the final CDF 
by subtracting the offset and dividing by the c

We then inver the CDF and from now on we can use 
the inverse to compute warped samples with the 
desired distribution by using samples from the 
canonical random variable as input
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Deriving the ଶ Sample Generation Functions
integrate_mc(0, 100, N, f, p_uniform, gen_uniform) vs integrate_mc(0, 100, N, f, p_x2, gen_x2) 

def integrate_mc(a: float, b: float, N: int, f, p, gen):
X = gen(a, b, N)
estimates = f(X)/p(X, a, b)
result = estimates.sum() / N
return result

def p_uniform(x, a: float, b: float):
return x/(b-a)

def p_x2(x, a: float, b: float):
b3 = ((b**3)/3)
a3 = ((a**3)/3)
return x**2/(b3-a3)
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Now that we have completed the inversion method, it is
a good time to look back at the example that we looked
at in the beginning. Remember how we found that
sampling a particular function with a distribution
proportional to x squared worked much better than
uniform sampling. But the code that we used to do it
was somewhat unintuitive. Now that we have mastered
the inversion method, let‘s look at it once more.
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integrate_mc(0, 100, N, f, p_uniform, gen_uniform) vs integrate_mc(0, 100, N, f, p_x2, gen_x2) 

def integrate_mc(a: float, b: float, N: int, f, p, gen):
X = gen(a, b, N)
estimates = f(X)/p(X, a, b)
result = estimates.sum() / N
return result

def p_uniform(x, a: float, b: float):
return 1/(b-a)

def p_x2(x, a: float, b: float):
b3 = ((b**3)/3)
a3 = ((a**3)/3)
return x**2/(b3-a3)

Deriving the ଶ Sample Generation Functions
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𝐹 𝑥 =
𝑥ଷ

3
, 𝑐 =

𝑏ଷ − 𝑎ଷ

3
, 

𝑝 𝑥 =  
𝑥ଶ

𝑐
,

𝑃௑
ିଵ 𝜉 = 𝑎ଷ + 𝜉(𝑏ଷ − 𝑎ଷ)

య
, 

def gen_uniform(a: float, b: float, N: int):
xi = np.random.rand(N)
return xi * (b - a) + a

def gen_x2(a: float, b: float, N: int):
xi = np.random.rand(N)
b3 = (b**3)
a3 = (a**3)
return (a3+xi*(b3-a3))**(1.0/3.0)

And you should confirm for yourself that, in fact, when
we follow the recipe for the inversion method, we arrive
at the solution that is implemented by these functions. 
We first compute the indefinite integral, then the
proportionality constant, and then use it to get a valid 
PDF and a CDF, which we then invert. The function
p_x2 gives the code for a valid PDF, and the function
gen_x2 produces samples, according to the inverse of
the CDF. I hope that you can appreciate how cleanly
these mathematical concepts that we just developed
can be applied in code to give us a desired behavior, 
but if not that‘s ok too :)

That already takes care of the first big leap for today. 
But now we are going for a real challenge: solutions for
arbitrary sampling strategies with non-cartesian
domains!
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Today’s Roadmap
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What exactly are CDFs and PDFs?
What is the inversion method?

How to sample arbitrary functions?
What’s the fastest way to cosine-
weighted hemisphere sampling?

The Inversion 
Method

Sampling the 
Unit Disk

Required 
Background 
(CDF, PDF)

Importance Sampling 
for the Diffuse BRDF

Sampling the 
Hemisphere

Importance 
Sampling Unlocked!

Sampling the Unit Disk 2: 
Crossing Domains

But before we do this directly on the hemisphere, we 
are going to start small and first try our hand at 
something a little simpler: the unit disk. 
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Sampling a Unit Disk

Imagine we have a disk-shaped surface with radius that 
registers incoming light (color) from directional light sources

As an exercise, we want to approximate the total 
incoming light over the disk’s surface area

We integrate over an area of size 

We will use the Monte Carlo integral for that
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2

2
r = 1

Before we move to the hemisphere, we start off with a 
smaller step in the right direction, that is sampling the 
unit disk. 

Imagine that we have a disk-shaped surface, and we 
can measure the light that arrives at each point as an 
RGB color.

Now in order to get a measure of the full light that the 
disk receives, we want to sample and integrate over the 
surface.

To start off, we will want to generate uniformly 
distributed samples in 2D, but this time there is a catch: 
we want to distribute samples evenly

On the surface of a unit disk with radius 1 instead of a 
rectangular area. For rectangular areas, we saw that 
we can just take two independent uniform variables and 
sample them separately.

It is not so simple for the unit disk.



‹Nr.›

For now, we know that the surface area of the unit disk, is of 
size pi, so we will keep that information in mind.
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Uniformly Sampling the Unit Disk

If we can manage to uniformly sample the disk, then we can 
compute the Monte Carlo integral as a simple average 

By drawing uniform samples in and , 
we cannot cover the area precisely

Inscribed square: information lost

Circumscribed square: unnecessary samples
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From the Monte Carlo lecture, we know that if we can 
uniformly sample a domain, then the Monte Carlo 
integral is a simple average times the volume of the 
domain.

But if we simply draw samples from uniform variables in 
x and y, we cannot cover the circle of the disk precisely.
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Uniformly Sampling the Unit Disk

If we can manage to uniformly sample the disk, then we can 
compute the Monte Carlo integral as a simple average

By drawing uniform samples in and , 
we cannot cover the area precisely

Inscribed square: information lost

Circumscribed square: unnecessary samples
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Uniformly Sampling the Unit Disk

If we can manage to uniformly sample the disk, then we can 
compute the Monte Carlo integral as a simple average

By drawing uniform samples in and , 
we cannot cover the area precisely

Inscribed square: information lost

Circumscribed square: unnecessary samples
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If we want to enclose the unit disk with cartesian 
coordinates, we can look at x and y coordinates from -1 
to 1.

But, inside that 2x2 area, the unit disk only occupies 
only an area of size of pi out of the total 2x2 area.

So we will necessarily be placing redundant samples 
that land outside the disk. 

Since there is no light measured outside of the disk, 
those samples are worthless.
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Back to the Unit Disk

We do not want to waste samples if we can avoid it

Instead, find a way to generate uniform samples on the disk

Create samples in a non-cartesian domain: 2D polar coordinates
Polar coordinates defined by radius 𝑟 ∈ [0,1) and angle 𝜃 ∈ [0,2𝜋)

Transformation to cartesian coordinates: 
𝑥 = 𝑟 cos 𝜃
y = 𝑟 sin 𝜃
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So second attempt to sample the unit disk. Lets find a 
way to generate inherently uniform samples without 
throwing them away. 

There are other ways to sample a 2D plane. We have a 
coordinate system that is also 2-dimensional but where 
we can easily limit points to a disk of given extent. 
We’re talking about polar coordinates. 

Polar coordinates around a given origin are defined by 
a radius r and angle theta in the range from 0 to 2pi. 
For the unit disk, we will use a radius of 1.

The transformation from polar coordinates to cartesian 
coordinates is as follows: x = r times the sine of theta 
and y is r times the cosine of theta. 
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Uniformly Sampling the Unit Disk?

Convert two to ranges to get polar coordinates

Convert to cartesian coordinates
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void sampleUnitDisk()
{

std::default_random_engine r_rand_eng(0xdecaf);
std::default_random_engine theta_rand_eng(0xcaffe);

std::uniform_real_distribution<double> uniform_dist(0.0, 1.0);

for (int i = 0; i < NUM_SAMPLES; i++)
{

auto r = uniform_dist(r_rand_eng);
auto theta = uniform_dist(theta_rand_eng) * 2 * M_PI;
auto x = r * sin(theta);
auto y = r * cos(theta);

samples2D[i] = std::make_pair(x, y);
}

}

So this seems like a good solution: We generate 
uniform samples in polar coordinates, where samples 
can be naturally limited to a disk by a maximum 
parameter for r and then convert them to cartesian 
coordinates to get points in x,y! So let’s try this right 
away.
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We successfully sampled the unit disk in the proper range

However, the distribution is not
uniform with respect to the area

Samples clump together at center

Averaging those samples will give 
us a skewed result for the integral!

Clumping

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1
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Except, not exactly, because, unfortunately, uniformly 
distributed samples in polar coordinates are NOT also 
uniformly distributed in cartesian coordinates, Since we 
wanted to sample the surface area uniformly, this 
distribution will not do because samples clump together 
at the center. And the fact of the matter is, if sample 
distribution and PDF don’t match, that is, if we treat a 
non-uniform distribution as if it were uniform during 
monte carlo integration, we will get a wrong result for 
our integral. So how do we fix this?

You can pause the video here and take five or ten 
minutes to try and come up with a solution for yourself 
if you like.
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Uniformly Sampling the Unit Disk: A Solution

The area of a disk is proportional to ଶ, times a constant factor 

If we see the disk as concentric rings of width , the inner rings 

up to radius ௝ should contain 
௥ೕ

௥

ଶ
out of total samples

Conversely, the ௧௛ sample should lie in the ring at radius ௜
௜

ே

Since is uniform in , we can switch ௜

ே
for ௜ to get ௜ ௜
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Ok, so let’s take a step back, think about the issue 
again and try to solve this smartly.

We know that the area of a disk is r squared times pi

Consider a sample budget of N samples and try to 
distribute them evenly over the surface of the disk

If we interpret the disk as many, slim concentric rings of 
width delta r, then the inner j rings up to radius j times 
delta r should contain rj over r squared times N of the 
grand total N samples that we are using

We can invert this figure to find that, if we want to 
distribute samples uniformly, given the radius r, then the 
i/th sample should lie in the ring that covers the radius r 
times square root of i over N.

Since we know that the order of samples along our 
domain axes doesn’t matter in monte carlo integration, 



‹Nr.›

we could swap the coordinate i/N for a canonic random 
variable, and we get r_i = r times sqare root of the output 
from a canonical random variable.

We don’t need to make a change for theta, because we saw 
that the distribution doesn’t vary with the angle.
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Uniformly Sampling the Unit Disk: A Solution

It works, and it is not even a bad way to
arrive at the correct solution

However, for more complex scenarios, we
might struggle to find the solution so easily

With the tools we introduced earlier (and a 
few new tricks), we can formalize this process 
for arbitrary setups!
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So let’s make this change. Instead of uniformly 
sampling r, we compute it as the square root of a 
canonical random variable times r.

It works indeed, and it is not even a bad way to arrive 
at the correct solution

However, if you pursue rendering into its professional 
domain, you will find that you won’t be able to derive 
the solution for other sampling domains so easily. 

You can take this solution and apply it and it will work 
fine. But we will show you a more formal solution so 
that you also have the necessary tools if you have to 
solve more complex tasks than this. So what follows is 
a formal method to achieve uniform sampling of 



‹Nr.›

random variables with under transformations.  
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Today’s Roadmap
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What exactly are CDFs and PDFs?
What is the inversion method?

How to sample arbitrary functions?
What’s the fastest way to cosine-
weighted hemisphere sampling?

The Inversion 
Method

Sampling the 
Unit Disk

Required 
Background 
(CDF, PDF)

Importance Sampling 
for the Diffuse BRDF

Sampling the 
Hemisphere

Importance 
Sampling Unlocked!

Sampling the Unit Disk 2: 
Crossing Domains

This brings to our next stop, part 2 of the chapter for 
sampling the unit disk. This time, we will do it by 
mathematically analyzing and compensating for the 
effect that a transformation of samples from one 
domain to the other has on their distribution. 
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Another Look at the PDF

Rendering – Importance Sampling

We saw samples being “warped”: we can interpret the inversion 
method as a spatial transformation of uniform samples

Let’s treat the space in the input domain like a grid of infinitesimal 
hypercubes: segments in 1D, squares in 2D and cubes in 3D[5]

If we warp a domain where each variable is to one with joint PDF 

஽, then ଵ

௣ವ
is the change in volume of the hypercubes after warping

50

So let’s take a step back for a moment and look at the 
PDF from a different angle. We saw 2D samples being 
“warped” into a new, 2D distribution, and we can 
interpret this warping as a transformation of the space 
from the input domain to a target distribution. If we 
convert uniformly spaced input samples with the 
inversion method, we usually don’t get uniformly 
spaced outputs. 

Let’s treat some tiny, regular interval in the input 
domain as an infinitesimal hypercube: a hypercube is a 
line in 1D, a square in 2D and a cube in 3D. If we warp 
the inputs of canonic variables as we did before to 
samples of a distribution with a joint PDF pD, then we 
can express the change in the volume of these 
hypercubes by 1 over pd.
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Visualizing the PDF in 2D

The left represents our inputs and the right our target distribution
This time, we warp grid coordinates with the inversion method
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ξଵ, ξଶ 𝑌 = ξଶ and 𝑋 ∈ 0,1 , 𝑝௑ 𝑥 = 2𝑥

Here we have on the left our input variables, Xi 1 and Xi 
2, and we plot a regular grid over the entire 2D input 
domain. On the right-hand side, we will plot the same 
grid coordinates after we warp them with the inversion 
method to produce the distribution given below, which 
is uniform for y coordinates and linear for x coordinates.
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ξଵ, ξଶ

The areas of all 2D hypercubes (grid cells) are scaled by ଵ

௣೉ ௫ ௣ೊ(௬)

௑ , cells on the right at are half their original width

Visualizing the PDF in 2D
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𝑌 = ξଶ and 𝑋 ∈ 0,1 , 𝑝௑ 𝑥 = 2𝑥

And we can see that if we do that, the areas of all 2D 
hypercubes are scaled by the facter 1 over px(x).

Note that, after the transformation, the rectangles on 
the very right are approximately half as wide as the 
original ones
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Earlier, we saw samples with ௑ ௒

Visualizing the PDF in 2D
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2D Variables with Linear PDFs
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In this 2D setup, we have joint PDF ௑ ௒

Space near point is compressed down to ଵ
ସ

of its original size

Visualizing the PDF in 2D
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ξଵ, ξଶ 𝑋, 𝑌 ∈ 0,1 , 𝑝௑ 𝑥 = 2𝑥, 𝑝௒ 𝑦 = 2𝑦
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This PDF compresses space at higher values of , dilates at lower
If space shrinks or grows, samples in it become denser or sparser

Visualizing the PDF in 2D
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And if we plot once again the samples that are 
generated by the canonical random input variables and 
again after the transformation to a distribution with the 
desired PDF, we can see that the space that was 
occupied before by a small hypercube has now been 
expanded, and with it the distance between the 
samples in this region.

So in summary, an alternative way to interpret the PDF 
is to take its reciprocal and treat 1/ the pdf as the 
change of the volume for infinitesimally small regions at 
given points.
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Let’s transform a regular grid from polar to cartesian coordinates

Polar To Cartesian Coordinates
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𝑋 = 𝑟 cos(𝜃)
𝑌 = 𝑟 sin(𝜃)

𝑟

𝜃

Right away, let us convert a regular grid from polar to 
cartesian coordinates. What happens if we do that?

We can see that some squares in the grid are squished 
together, while others are expanded, depending on 
where they are in polar coordinates.

Remember when we interpreted the reciprocal of the 
PDF as a transformation of hypercube volume? So we 
can see that the transformation from polar to cartesian 
coordinates seems to have a clear effect on the PDF. 
And we can make this even more clear.
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Take 100k samples, transform and see in which square they end up

First Attempt to Learn the PDF
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𝑋 = 𝑟 cos(𝜃)
𝑌 = 𝑟 sin(𝜃)

Here is the same transformation, but now instead of a 
grid with uniformly created random points from polar 
coordinates to cartesian coordinates. 

We already know and see that this distribution doesn’t 
look uniform, but we can still visualize it a bit more 
clearly
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Take 100k samples, transform and see in which square they end up

First Attempt to Learn the PDF
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ξଵ, ξଶ 𝑋 = 𝜉ଵ cos(2𝜋𝜉ଶ), 𝑌 = 𝜉ଵ sin(2𝜋𝜉ଶ)

The PDF in the source and target domain for a 
particular sampling strategy after is actually quite easy 
to visualize. All you have to do is subdivide your target 
domain into bins, generate a number of samples and 
then count how many of them end up in each box. 
Optionally you can normalize the counters to get the 
actual density values for each bin. Note that by making 
it discrete in this way, what we see is technically a 
probability MASS function now rather than a probability 
density function, but for an infinite number of bins, they 
are the same. What we see confirms what we saw 
earlier: after transforming uniform samples in polar 
coordinates to cartesian ones, the density is much 
higher at the center of the disk. 

So we know we need the transformation from polar to 
cartesian coordinates to make samples inside a disk. 



‹Nr.›

But we also know that this transformation changes our 
sample distribution!
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Knowing the PDF

If we know the effect of a transformation on the PDF, we can
Use it in the Monte Carlo integral to weight our samples, or
Compensate to get a uniform sampling method after transformation
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𝐼𝑛𝑝𝑢𝑡 (𝜉ଵ, 𝜉ଶ) 𝐶𝑎𝑟𝑡𝑒𝑠𝑖𝑎𝑛 (𝑥, 𝑦)

𝑃𝑜𝑙𝑎𝑟 (r, 𝜃)

𝑇(𝑟, 𝜃)
Scale + 

compensate

Now our goal is to find out exactly what this change to 
the PDF is when samples are being transformed. If we 
can quantify this effect, we could

Use it weight samples during monte carlo integration, 
because we know the actual PDF, or

Compensate the sample generation in polar 
coordinates so that they will be uniform AFTER the 
transformation



60

Knowing the PDF

If we know the effect of a transformation on the PDF, we can
Use it in the Monte Carlo integral to weight our samples, or
Compensate to get a uniform sampling method after transformation
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𝐼𝑛𝑝𝑢𝑡 (𝜉ଵ, 𝜉ଶ) 𝐶𝑎𝑟𝑡𝑒𝑠𝑖𝑎𝑛 (𝑥, 𝑦)

𝑃𝑜𝑙𝑎𝑟 (r, 𝜃)

𝑇(𝑟, 𝜃)

Equal area!

Scale + 
compensate

We are going to go with the second option.
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Computing the PDF after a Transformation

Assume a random variable and a bijective transformation 
that yields another variable 

Bijectivity implies that must be either monotonically 
increasing or decreasing with 

This implies that there is a unique ୧ for every ୧, and vice versa

In this case, the CDFs for the two variables fulfill ஻ ஺
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Assume we have a random variable A and a bijective 
transformation T whose input is A and whose output is 
B, which itself is another random variable. 

If the transformation is bijective, this implies that the 
output of T must be either monotonically increasing or 
decreasing with a.

This in turn means that we can find a unique output 
value for every input value, and vice versa.

Consequently, we find that the output of the CDF of the 
transformed random variable for a transformed value 
T(a) is equal to the PDF of the original variable A for 
value a.
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Computing the PDF after a Transformation

If and increases with , we have:  ௗ௉ಳ(௕)

ௗ௔

ௗ௉ಲ(௔)

ௗ௔

If decreases with (e.g., , we have:  ௗ௉ಳ(௕)

ௗ௔

ௗ௉ಲ(௔)

ௗ௔

Since ஻ is the non-negative derivative of ஻, we can rewrite as:

஻ ஺

஻

ିଵ

஺
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𝑈𝑠𝑖𝑛𝑔:
𝑑𝑃௑ 𝑥

𝑑𝑦
=

𝑝௑ 𝑥  𝑑𝑥

𝑑𝑦

So that leaves two possibilities for the variable b. It can 
either increase with a, or decrease with a, for instance 
if b is just negative a.

In both cases, we have an equality for the change in 
the CDF of B over a change in a and the change in the 
CDF of A over a, just the sign in front differs. 

The term on the right is just the derivative of the CDF 
for A, and we know the derivative of the CDF is the 
PDF.

For the term on the left, we can use that the change in 
the CDF is equal to the PDF times dx, so we get pB of 
b times db over da equals pa of a.

We take the absolute value for db over da, because the 
differentials could be going in different directions if for 



‹Nr.›

instance b is negative a.

But since we want to find only the amount by which the PDF 
changes, and PDFs must always be positive, so we take the 
absolute value of db over da.

Taking the reciprocal and moving the term to the right, we get 
a formula for expressing the PDF of the transformed random 
variable as a change of to the A’s PDF!
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Computing the PDF after a Transformation

Let’s interpret ஻
ௗ௕

ௗ௔

ିଵ

஺

It is the probability density of at , multiplied by ௗ௕

ௗ௔

ିଵ

ௗ௕

ௗ௔

ିଵ
has two intuitive interpretations:

the change in sample density at point if we transform by 
or, 
the reciprocal change in volume (space) for a volume element 
(hypercube) at point if we transform by transformation 
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Let’s try to find an intuitive interpretation for this 
equality:

The PDF of b is that PDF of a times db over da 
inverted. Now, based on what we have done before, we 
can interpret this term in two ways.

We can either see it as the change in sampling density 
at 𝑎 if we transform by 𝑇
or, 
the inverse change in the volume of an infinitesimal 
hypercube at location 𝑎 if we transform 𝑎 by 𝑇

Try to make some sense of the latter interpretation, 
because we will return to it in a minute
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Multidimensional Transformations

If we try to apply the above to the unit disk, we fail at 

We can’t evaluate ௗ௫

ௗ௥

ିଵ
: the transformation that produces one 

target variable is dependent on both input variables and vice-versa

We cannot compute the change in the PDF between individual 
variables, we must take them all into account simultaneously

It’s matrix time!
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Ok great,so we try to apply this method to the unit disk 
but we find that our tools don’t work here because the 
transformation is not a function of just one variable

It’s a function of TWO variables.

So in order to quantify the change in the PDF in this 
multidimensional setup, we must find a solution that 
takes all involved variables into account simultaneously.

And we can do this by moving from individual values to 
handling matrices of random variables.
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Multidimensional Transformations

We write the set of values from a multidimensional variable 
as a vector and the outputs of transformation as a vector :

ଵ

ே

ଵ

ே

ଵ

ே

Instead of quantifying the change in volume incurred by 
ௗ் ௔

ௗ௔
, our goal is now to quantify the change incurred by 
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We can collect all of our individual, single output 
variabes into one multidimensional random variable. 
The output from such a variable is a vector. We can do 
this for the original variable A and the transformed 
variable b.

If we do this, then we can just take equality from before 
and replace the PDF of A with the joint PDF of the 
multidimensional variable A arrow and the same goes 
for b.

But for the actual change in the PDF, we have to look at 
the term that before was the inverse of db over da, or d 
T(a) over da.

We now have to make sure that this term incorporates 
the full change of the joint PDF when we transform one 
multi-dimensional variable to another.
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The Jacobian Matrix

For a transformation , we can define the Jacobian matrix 
that contains all ௝ ௜ combinations of partial differentials

்

డ௕భ

డ௔భ

డ௕భ

డ௔ಿ

డ௕ಾ

డ௔భ

డ௕ಾ

డ௔ಿ

If we consider ’s domain as a space with axes, ் gives the 
change of the edges of a volume element from to 
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This is where we have introduce, or recap if you 
already know it, the Jacobian matrix. 

If we have a transformation from vector a to vector b, 
the Jacobian matrix contains all combinations of partial 
differentials for the individual values in both vectors.

Therefore the Jacobian contains the values of all 
possible partial derivatives that we can form with 
vectors and b. 

So if we take the first row and first column, the entry 
indicates how the first value of vector b changes with 
the first value in vector a.

In the second row, first column, we see how the second 
value of vector b changes with the first value in vector 
a, and so on and so forth.

Basically the Jacobian matrix in our application 



‹Nr.›

encodes for a given location vector a, how each transformed 
variable changes with each untransformed variable.

The first column indicates how all transformed variables 
would be influenced by infinitesimal changes in the first 
untransformed variable.

The second column indicates how all transformed variables 
would be influenced by infinitesimal  changes in the second 
untransformed variable, and so on and so on.
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The Jacobian Matrix, Visualized

Change in edges of a volume element (infinitesimal hypercube) at 

𝐽்(𝑎⃗) =

𝜕𝑏ଵ

𝜕𝑎ଵ
⋯

𝜕𝑏ଵ

𝜕𝑎ே

⋮ ⋱ ⋮
𝜕𝑏ே

𝜕𝑎ଵ
⋯

𝜕𝑏ே

𝜕𝑎ே
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𝑏𝑎⃗
1
0

𝜕𝑏ଵ

𝜕௔ଵ

𝜕𝑏ଶ

𝜕௔ଵ

0
1

𝜕𝑏ଵ

𝜕௔ଶ

𝜕𝑏ଶ

𝜕௔ଶ

If we again take the help of our imaginary infinitesimal 
hypercubes, we could say that each column of this 
Jacobian matrix shows us how the edges of an axis-
aligned hypercube in our input domain change during 
the transformation T.

And this is interesting because it means, for any given 
position vector a, we can see the Jacobian matrix itself 
as a transformation matrix that is valid only for an 
infinitesimally small region at position vector a. 
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The Jacobian

The columns of a square matrix can be interpreted as the natural 

base vectors of a space if they were transformed by it

The determinant of a matrix yields the volume 
of a parallelepiped spanned by these vectors[3]

் , the Jacobian of , gives the change in volume at due to 
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𝑏

𝑱𝑻 𝒂

The final piece that we need is the determinant. If we 
are comfortable with seeing the Jacobian matrix as a 
transformation matrix, then we can quickly quantify the 
change in volume that generates. The columns of a 
square transformation matrix can be seen as the basis 
vectors of the transformed space. With this 
interpretation, the determinant of a matrix computes the 
volume of the parallelepiped that is formed by these 
basis vectors. 

So we are going to replace the term of change in range 
from earlier with the determinant of the the Jacobian 
matrix of, or the Jacobian of T, for short.

This gives us the change in volume of an infinitesimal 
hypercube at a multidimensional location if we 
transform it with transformation T. This is exactly what 
we have been looking for.



‹Nr.›

Now if this made your head spin a little, that is totally fine. 
Feel free to revisit this part of the lecture, because it is 
definitely a tough concept to grasp.

You don’t need to remember these steps to apply the 
techniques,

But we wanted to show you the underlying idea and some 
reasoning for why it makes sense to use the reciprocal of the 
Jacobian to quantify the change in the PDF, rather than just 
give you the final formula.
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Computing the PDF of a Transformation

Let’s try polar coordinates again: 

డ்
௥
ఏ

డ
௥
ఏ

்

డ௫

డ௥

డ௫

డఏ
డ௬

డ௥

డ௬

డఏ

௣(௥,ఏ)

௥
, or , which tells us: the change in 

probability density from to is inverse proportional to 
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Returning to the unit disk, we try measure the change 
in the PDF caused by the transformation, this time with 
multidimensional random variables.

We can easily find the Jacobian matrix of T by 
computing all partial derivatives, and if we take the 
determinant of the resulting matrix, we get radius r

So we have equality, p(x,y) is equal p(r, theta) over r, or 
p(r,theta) is equal to r times p(x, y).

What this tells us, is, a uniform density in cartesian 
coordinates x,y must be proportional to r in polar 
coordinates r, theta
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Sampling Joint PDFs Correctly

For independent variables, the joint PDF is ௑ ௒

In general, this is an assumption that we should not rely on

Furthermore, after a transformation, only the joint PDF is known

The proper way to sample multiple variables is to compute
the marginal density function 𝑝௑ 𝑥  of one
the conditional density function 𝑝௒ 𝑦|𝑥  of the other
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The last challenge we need to face is the correct 
sampling of a joint PDF. Until now, we only saw 
distributions from independent variables, we knew their 
individual PDFs, so we could simply invert their CDFs 
und sample them separately. But this is an assumption 
that we should not make in general, and there is a 
proper way to do it that only requires a little extra effort.

In the case of two variables and given their joint PDF, 
we can do this as follows: we first compute the 
marginal density function of one of the variables, and 
then the conditional density function of the other.

We will use these, marginal and conditional density 
functions, instead of the PDFs for individual variables, 
because that is only guaranteed to work if they are 
independent.

But the steps we need to perform on them are the 



‹Nr.›

same as before: integrate them, invert the indefinite integrals, 
and use them for sampling.

If we do this, it basically equates to a procedure where we 
first sample one of the random variables and then sample the 
other, because the second variable’s sampling might depend 
on what was returned by the first, hence “conditional”.
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Marginal and Conditional Density Function

Assume we have obtained the joint PDF of variables 
with ranges ௑ ௑ and ௒ ௒

In a 2D domain with we can think of ௑ as the average 
density of at a given over all possible values 

We can obtain the marginal density function for one of them by 
integrating out all the others, e.g.: ௑

௕ೊ

௔ೊ 

We can then find ௣(௫,௬)

௣೉(௫)
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How do we get these marginal and conditional density 
functions? We will look at the case for 2 variables first.

You might have heard about marginal probability 
already. If you have multiple variables that define your 
outcomes, the marginal density function of a variable is 
the probability density function for that one variable 
alone, we don’t care about the values of the other. 

So for example, if out of all possible combinations of x 
and y we have 50% chance of seeing x=1, then the 
marginal density for x based on p(x,y) will be 0.5 for x = 
1.

You can also see a variable X’s marginal pdf as the 
function tells you the average density at a given value x 
over the entire range of the other variable.



‹Nr.›

There is an easy way to get a closed-form solution for the 
marginal pdf of a variable, and that is by “integrating out”.

We do this by integrating the joint PDF over the full range of 
the other variable.

The rules of probability tell us how we can get the conditional 
density as well, that is, the probability of seeing a certain 
value y for a given value x. 

Once we have the marginal density function, computing the 
conditional density function is easy, we just divide the joint 
PDF by it.
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Adding More Variables

What to do for multiple variables, e.g. and ?

Find first marginal density 𝑝௑ 𝑥 = ∫ ∫ 𝑝 𝑥, 𝑦, 𝑧  𝑑𝑦 𝑑𝑧 ௕௒

௔௒

௕௓

௔௓

Find first conditional density 𝑝௑ 𝑦, 𝑧|𝑥 =
௣ ௫,௬,௭

௣೉ ௫

Find second marginal density 𝑝௒ 𝑦|𝑥 = ∫ 𝑝 𝑥, 𝑦, 𝑧  𝑑𝑧 
௕௓

௔௓

Find second conditional density 𝑝௑ 𝑧|𝑥, 𝑦 =
௣ ௬,௭|௫

௣ೊ ௬|௫

Integrate + invert first marginal, first and second conditional densities
Sample each of them
Extend ad libitum to even more variables 

Rendering – Importance Sampling 72

For the sake of completeness, we also include for you 
here the procedure to extend this to more variables. 
We won’t be using this anytime soon, but in case you 
were wondering how this can be scaled, you can simply 
follow this method here.
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Sampling the Unit Disk: The Formal Solution

We know the proportionality constant is (area of sampled disk) 

Since we want uniform sampling and sample probabilities should 
integrate to 1, the target PDF in cartesian coordinates is ଵ

గ

் told us that , so we want ௥

గ

ோ
ଶగ

଴
and ௣(௥,ఏ)

௣ೃ(௥)

ଵ

ଶగ
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Ok finally! Let’s apply all that we have learned and find 
a formal solution for uniformly sampling the disk. Now 
that we know all the steps, this will be really quick. 

We know that the sampling domain has a total area of 
pi, and we know that the PDF must integrate to one 
over the sampling domain, so we know that the density 
for any 2D point should be 1 over pi.

We also know from before that, if we want a certain 
PDF in cartesian coordinates, we must multiply by the r 
to get the corresponding PDF in polar coordinates, so 
we should the PDF r over pi in polar coordinates for a 
uniform PDF in cartesian coordinates.

Finally, we compute the marginal density function for r 



‹Nr.›

by integrating the joint density function over the full range of 
theta, and then the conditional density for theta given r.

And from that, we already know what to do: integrate the 
PDFs to get CDFs, invert them, and sample them to samples 
for our custom distributions. Let’s quickly check if it worked.
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Sampling the Unit Disk: The Formal Solution

If we create samples in polar coordinates for these PDFs, we will get 
the uniform distribution in after applying transformation 
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𝑟

𝜃

And yes, in fact we can confirm that this sampling 
method in polar coordinates gives us a uniform 
distribution in cartesian coordinates!
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Sampling the Unit Disk: The Formal Solution

Integrate marginal and conditional PDFs and
invert—we get the same solution as before:

𝑟 = Pோ
ିଵ 𝜉ଵ = 𝜉ଵ

𝜃 = 𝑃஀
ିଵ 𝜉ଶ = 2𝜋𝜉ଶ

is constant: no matter what radius we are looking at, all 
positions on a ring of that radius (angle) should be equally likely

Final integral: ௧௢௧௔௟
గ

ே ௜ ௜ ௜ ௜
ே
௜ୀଵ
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So it is no surprise, the solution is exactly the same as 
before, so we can confirm that it is correct. 

Something that we can confirm now: even though we 
computed the conditional density of theta, it didn’t 
actually change much. We are still sampling uniformly 
from 0 to 2pi, as we did when we first tried sampling the 
disk. But in more complex setups, this may not be the 
case, so it’s best to stick with the procedure and 
compute the conditional density whenever you try to 
enforce a particular sampling after a transformation. 

The final integral over the disk is just a formality, 
because the samples are uniformly distributed over the 
area and we are integrating over the area, we can use 
the simpler Monte Carlo integration, which is a simple 
average of the sampled RGB colors, times PI.
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Today’s Roadmap
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What exactly are CDFs and PDFs?
What is the inversion method?

How to sample arbitrary functions?
What’s the fastest way to cosine-
weighted hemisphere sampling?

The Inversion 
Method

Sampling the 
Unit Disk

Required 
Background 
(CDF, PDF)

Importance Sampling 
for the Diffuse BRDF

Sampling the 
Hemisphere

Importance 
Sampling Unlocked!

Sampling the Unit Disk 2: 
Crossing Domains

Ok, that was quite a ride. But the good thing is, this was 
the final mathematical tool that we needed to learn 
about. From here on out, it’s basically just repeating 
and applying things we already know when we get to 
our next important stop, sampling the hemisphere. 
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Moving on to the Hemisphere

This took as a while, but we have seen all the formal procedures 

We only need to switch from integrating planar area to points 
on hemisphere surface (i.e., vectors with length )

Use spherical coordinates and bijective from to 
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Now that we have mastered the unit disk, let’s move on 
to the unit hemisphere. This is what we wanted all 
along, a way to integrate functions over the hemisphere 
surrounding a point in the scene to find out the total 
amount of incoming light.

So instead of integrating over a planar area, we will 
now be integrating over the surface area of the unit 
hemisphere, or direction omega in 3d of length 1.

But sampling in 3D with the restriction that vectors all 
must be of length 1 would be kind of awkward.

We would have to throw away all the samples that don’t 
land exactly on the surface of the sphere.

So instead, we are gonna use a space where the 
surface of the sphere is an easy shape to get, and for 
that we use spherical coordinates, which are defined by 
a radius r and two angles theta and phi.



‹Nr.›

Like with the unit disk, we have a transformation from one 
sample space to the other.

The bijective transformation from r, theta and phi to x,y, and z 
is something that we can easily find in a textbook, so we will 
use it to transform spherical samples into vectors.

Again, we will look for a way to find a sampling strategy with 
geometric reasoning before looking at the formal method.
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Deriving Integration Over Hemisphere

Each direction represents an infinitesimal surface area portion 
How do we integrate a function with differential ?
Integration over points on hemisphere surface , w.r.t.

Rendering – Importance Sampling 78

𝜃

𝜙

𝜔
𝑑𝜔

𝑛

We can define an infinitesimally small piece of surface 
area on the unit hemisphere for each direction vector 
omega.

Each direction can be uniquely identified by spherical 
coordinates r, theta and phi. On the unit hemisphere, r 
= always 1, so we can ignore it for now

So let’s assume we want a solution for the integral over 
the surface of the hemisphere, how can we write this as 
an integral over theta and phi?

Again, if you want to, take 5 minutes and try to come up 
with a solution if you care to. Remember that instead of 
a planar surface, we are now integrating over the 
curved surface of the hemisphere. 
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Deriving Integration Over Hemisphere

We assume a planar surface with an upright facing normal 

We use the integral intervals గ

ଶ

I.e., a curve from perpendicular to parallel for , a ring for 
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2𝜋

𝜋

2

𝑛

First let’s define our setup. We have a planar surface 
that the point in the scene and the hemisphere rests 
on.

The surface has a normal, and the hemisphere is 
oriented around it. So the range of theta, from normal 
to parallel, covers exactly pi over 2 radians

Since phi covers a full circle, its range is from 0 to 2pi. 
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Deriving Integration Over Hemisphere

We can split the surface along into ribbons of width 
The upper edge of the ribbon is slightly shorter than the lower
If we keep adding more and more ribbons, this difference vanishes
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Δ𝜃

Again, we will try to disassemble the curved surface of 
the hemisphere into smaller parts that we can easily 
analyze, and then put them back together again. 

Let’s assume we split the surface of the hemisphere 
along theta into ribbons of width delta theta.

We keep splitting the ribbons, and therefore delta theta 
gets smaller and smaller. 

In the beginning,, the upper edge of each ribbon will be 
slightly shorter than the lower one, but the more we 
split, the smaller this difference becomes.

If we split the ribbons infinitely often and delta theta 
goes towards an infinitesimally small number, this 
difference goes away completely
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Deriving Integration Over Hemisphere

As a ribbon’s width goes to , its area becomes its length times 
We can find this length by projecting the ribbon to the ground
Using trigonometry, we find the length of a ribbon is 
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So after infinitely many splits, the area of each ribbon is 
equal to its length around the surface, times an 
infinitesimal delta theta.

We can find the length of each ribbon by projecting it 
down to the ground.
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Deriving Integration Over Hemisphere

As a ribbon’s width goes to , its area becomes its length times 
We can find this length by projecting the ribbon to the ground
Using basic trigonometry, we find the length of a ribbon is
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sin 𝜃
𝜃

𝑛

cos 𝜃

Using some basic trigonometry rules, we ca then find 
the length of the ribbon as the circumference of a circle 
with radius of sine theta.



83

The length of a ribbon spans the entire interval 

Convert the length to an integral over ଶగ

଴

The final integral:  

ஐ

ଶగ

଴

ഏ

మ
଴

Deriving Integration Over Hemisphere
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𝜃

𝜙

𝜔
Δ𝜔

𝑛

The length of the ribbon covers the entire domain of 
phi, all the way around the hemisphere’s normal.

Also we don’t have a reason to expect that the surface 
area of the hemisphere changes between different 
angles of phi, so we can assume that the integral over 
phi is uniform.

So if we want to write the found length of the ribbon as 
the integral over phi, we can simple make it range from 
0 to 2pi. 

That cancels out the 2pi in the length of the ribbon 
length, so all that we are left with is sin phi.

And with that, we already have the final integral over 
the hemisphere w.r.t. theta and phi.
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Deriving PDF for Hemisphere Sampling

Integral of over area  

୼ఠ

Integral of w.r.t.  

୼థ

 

୼ఏ

Integration domain and are identical, thus: 

is bijective, we have and: 
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Δ𝜔
Δ𝜃

Now we have derived the integral over the hemisphere 
for theta and phi, but actually it is also valid for any 
arbitrary small region on the surface of the hemisphere.

Let’s look at an area on hemisphere surface, delta 
omega that we want to integrate over. We compare an 
integral over directions with the integral w.r.t. theta and 
phi that we just derived.

Since we can always transform theta and phi into an 
omega, it is ok to integrate a function depending on 
omega in both versions. Now if we compare the two, 
we see that integration domain and f of omega are the 
same. The result of both integrals must also be the 
same, so that leaves us with the conclusion that d 
omega is equal to sine of theta d phi d theta



‹Nr.›

We already know that if the transformation of a variable is 
bijective, the result of that transformation is again a variable 
and their CDFs must be equal. That means that their PDFs 
multiplied by their differentials must also be equal. So we can 
combine the equalities on this slide to get the relative 
difference between PDFs in spherical coordinates and over 
directions omega.

Concretely, we find that if we want a particular PDF for our 
directions on the unit hemisphere, we must multiply by sine of 
theta to get the corresponding PDF for sampling in spherical 
coordinates.

You can see that this is not as intuitive as perhaps our 
solution for the unit disk was. So it might have taken you 
quite a while to arrive at this on your own.

Luckily, we have our formal way of doing it, and this is now 
much shorter.
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Deriving PDF for Hemisphere Sampling, the Formal Way

Target distribution in , which is with ଶ ଶ ଶ

The transformation from to 

The Jacobian of the transformation gives ்
ଶ

, so we have 
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We use the transformation from spherical coordinates 
to points on the unit hemisphere. We have

X = r times sine of theta sine of phi

Y = r times sine of theta cosine of phi

Z = r  times cosine of theta

If we compute the Jacobian of this transformation, we 
get the factor r^2 times sine of theta

So we know that if we want a particular PDF for the 
distribution of points on the hemisphere, we must 
multiply this distribution by r squared times sine of theta 
for sampling in spherical coordinates.

Notice that on the unit hemisphere, r is 1, so it has no 
effect and we can ignore it moving forward.

And that’s it.
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Uniformly Sampling the Unit Hemisphere

The domain, i.e., the unit hemisphere surface area, is .
Uniformly sampling the domain over implies ଵ

ଶగ

Hence, since , we want ୱ୧୬ ఏ

ଶగ

Marginal density ஀ : ଶగ

଴

Conditional density : ௣ ఏ,థ

௣౸(ఏ)

ଵ

ଶగ
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The rest is now strictly by the book. We first find the 
volume of the domain, and we know the surface area of 
a unit hemisphere is 2pi.

So that means a uniform distribution over points on the 
hemisphere would need constant density 1 over 2 pi

We just saw how to convert a PDF for points on the 
hemisphere into a PDF for sampling in spherical 
coordinates, so we convert the PDF by multiplying with 
sine of theta. 

Then we find the marginal density for theta by 
integrating out phi.

And we find the conditional density of phi given theta.
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Uniformly Sampling the Unit Hemisphere – Complete 

Antiderivative of ஀ : (added constant )

Antiderivative of : ଵ

ଶగ

థ

ଶగ

Invert them to get ିଵ
ଵ ( is symmetric), ଶ

Apply transformation on to obtain uniformly distributed 

Finally done!
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With these two solutions for marginal and conditional 
density, we find their antiderivatives. To get a valid CDF 
for theta, we use a little trick, we add 1. Remember that 
this is allowed for antiderivatives. 

We can then invert these CDFs and get a sampling 
strategy for uniformly sampling the surface of the 
hemisphere with canonical random variables as inputs.

And because we will be using cartesian coordinates for 
our rendering routine, so basically XYZ directions for 
light and view rays, we transform them from spherical 
coordinates to points on the unit hemisphere in XY and 
Z.
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Today’s Roadmap

Rendering – Importance Sampling 88

What exactly are CDFs and PDFs?
What is the inversion method?

How to sample arbitrary functions?
What’s the fastest way to cosine-
weighted hemisphere sampling?

The Inversion 
Method

Sampling the 
Unit Disk

Required 
Background 
(CDF, PDF)

Importance Sampling 
for the Diffuse BRDF

Sampling the 
Hemisphere

Importance 
Sampling Unlocked!

Sampling the Unit Disk 2: 
Crossing Domains

Hopefully you saw, how much quicker the formal way 
for finding a uniform sampling strategy on the 
hemisphere was, compared to deriving it by hand and 
with intuition. This is what today’s agenda was all 
about, getting comfortable with a method that allows 
you to generate samples with custom distributions in a 
non-trivial domain. And in the future, if you ever go 
beyond the hemisphere, you will be able to apply this 
technique by following the steps, without having to 
derive it for every individual case. But for now, let’s use 
them what we came here for: importance sampling for 
path tracing. 
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Importance Sampling the Diffuse BRDF

Let‘s look once more at the reflected light in the rendering equation

When we bounce at a point , we already know quite a bit:
If we use a diffuse BRDF, then 𝑓 𝑥, 𝜔 → 𝑣 is a constant factor ఘ

గ

We can predict the cosine term—it depends on our choice of 𝜔

The tricky part, the big unknown, is the 𝐿 𝑥 ← 𝜔

Which directions will indirect light come from?
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௥ ఠ
ஐ

𝑓(𝑥)

Like we did so many times already, let‘s look at the
reflection part of the rendering equation.

Once again, we will restrict ourselves to diffuse 
materials for now. 

That way, when we are at a hit point and generate a 
sample for integrating the function for reflected light f(x) 
from all directions of the hemisphere, we know exactly
what terms we are dealing with. We have th BRDF, 
which is a simple constant factor for the diffuse 
materials we looked at so far. 

We have the cosine which is easy enough to predict, 
because it depends on our omega, but the tricky part is
the incoming light itself, because as we know, that is an 
infinitely recursive function. And that is what makes it
so difficult, because this infinite recursive function is
dependent on every single shape and every single
material in our scene, and how they all are arranged



‹Nr.›

relative to each other… clearly we can‘t make an exact guess
what f(x) looks like.
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If we don‘t know anything about , let‘s just assume a constant

ఘ

గ
and are constant, so clearly, ఘ

గ ఠ ఠ

With these assumptions, the
integrand function is governed
entirely by the term !

Importance Sampling the Diffuse BRDF
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ఠ
ஐ

𝜃

But if we have no idea what it looks like, that tells us
something. It tells us that, without additional 
information, light has an equal chance to come from all 
directions!  So let‘s just assume a constant factor k that
represents uniform incoming light from all directions. 
With that setting, where we assume constant incoming
light and a diffuse BRDF, the shape of the resulting
integrand is only dependent on the cosine of theta!
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Importance Sampling the Diffuse BRDF

We know that the ideal distribution for importance sampling a 
function is the one that minimizes variance, i.e., itself

With the assumption of constant light from all directions, our
integrand was simplified to something proportional to

Idea: Importance-sample hemispheres
around hit points with diffuse materials
with distribution ఠ
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𝑛 𝑛

Uniform 
hemisphere sampling

Cosine-weighted
hemisphere sampling

This brings us actually to the primary method of
importance sampling the hemisphere for diffuse 
materials. For importance sampling, we want our
distribution to mimic the shape of the actual function we
are integrating, and if that shape is only influenced by
the cosine, then what we need is a sampling
distribution that follows the cosine of theta over the
hemisphere. The cosine is, of course, highest when the
input is zero, which in our case means, more samples
would be distributed close to the apex of the
hemisphere, or in other words, they would focus around
the surface normal. On the bottom right, we see two
different sample distributions on the hemisphere, one
with uniform distribution, the other with cosine. Note 
how with cosine-weighted sampling, they are much
denser around normal, and how they fade out towards
the edge of the hemisphere!
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Cosine-Weighted Hemisphere Sampling?

In the first half, we saw how you can apply the inversion method for 
sampling arbitrary distributions

In the second half, we were all about making sure that we can reach 
our target distribution when we move from one domain to another

Cosine-weighted hemisphere sampling is a combination of the two

We have gone through all the necessary steps. 
Try to solve this formally with the inversion method as an exercise!
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In the first half of the lecture, we learned about the 
inversion method to make non-uniform distributions in 
simple domains. In the second half, we learned about 
how we can achieve a desired distribution in a non-
trivial target domain. Now it’s time to combine the two. 

We will actually not derive the exact steps. We think 
that if you paid close attention and were eager to learn 
something new, you should have everything you need 
to do this yourself, although you may want to go back 
and look at all the previous steps a little longer before 
trying this in practice. But all that is required here is, 
create a PDF candidate that is based on the cosine of 
omega, and then make sure that you can achieve this 
distribution on the surface of the hemisphere when you 
actually draw your random inputs in spherical 
coordinates. 



‹Nr.›

Now we actually promised you a shortcut to importance 
sampling for diffuse materials, and we haven’t forgotten 
about it. We believe that doing this yourself might give you a 
significant heureka moment and help you understand one of 
the more challenging aspects of rendering and sampling. 
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Cosine-Weighted Hemisphere Sampling!

Malley’s method: uniformly pick samples on the unit disk

Project them to the hemisphere surface ଶ ଶ

ୡ୭ୱ

గ

Done! Your samples are now
distributed with !
(Why? And why does this work? Try to find your own proof!)
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But if you don’t want to spend energy on that, there is a 
quick solution, called Malley’s method.

Malley’s method gives us exactly what we want: cosine-
weighted samples on the unit hemisphere, and it’s 
extremely easy.

All we have to do is draw uniform samples on the unit 
disk (we know how to do that already) and then project 
them to the surface of the hemisphere.

Done! The resulting sample distribution over the 
surface will be weighted with the cosine of theta. 

Why does this work? Again, we encourage you to 
invest some time in solving this yourself as an exercise. 
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Importance Sampling the Diffuse BRDF
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AO, 64 samples, uniform hemisphere sampling AO, 64 samples, diffuse BRDF importance sampling

And the results do pay off. Here we see two renderings
of the Ajax bust, rendered with the same number of
samples. However, the one on the left used uniform 
hemisphere sampling, the one on the right used
importance sampling. Clearly, we have cleaned up a lot
of noise by changing only a few lines of code. 
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More Importance Sampling

The impact will be much greater when we add non-diffuse materials

BRDF functions can
be rather complex…

…but can often be
nicely approximated

You will want to sample with distributions more complex than
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And later on, we will see that the effect is not only much
more pronounced in other materials, it is actually
REQUIRED for some of them to function properly. 

For some of the more complex materials, the
importance sampling strategy will not be as
straightforward as the one for diffuse materials, and 
sometimes we won‘t be able to make exact distributions
for given BRDFs at all. But in most cases, you will still 
be able to find good approximations, and if you do that, 
you will be glad that you have the inversion method at 
your disposal that we discussed today. 
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More Importance Sampling

Consider the modified Beckmann distribution for microfacet BRDFs

௘
ష ౪౗౤మ ഇ

ഀమ

గఈమ ୡ୭ୱయ ఏ

Yes, seriously!

Good luck with intuitive reasoning! Challenging, but doable task
with basic trigonometric identities and the inversion method!
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Take for instance the modified Beckmann distribution, 
which is commonly used for simulating specular 
reflection in microfacet  models, which we will discuss 
later in the lecture. 

Here, we have given you the distribution function 
parameterized by theta and phi. Yes, that’s the real 
formula to compute the probability density of a single 
sample, and you can imagine that making samples with 
this distribution is not something that you can easily 
come up with by using your intuition alone. However, it 
is very possible to use the inversion method and a few 
helpful trigonometric identities to come up with the 
sample generation method yourself with a pen and a 
piece of paper. For those who are looking for a 
challenge, this is the task for you.
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Importance Sampling the Full Rendering Equation

As you can imagine, this is a much more complex task

In fact, an enormous amount of research in rendering is actively 
pursuing better and better ways to make this happen

Other sophisticated methods, like multiple importance sampling
(MIS), can be of great help here!

We will hear more about MIS in upcoming lectures…
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So how far can importance sampling go? And will we
someday learn about a method to actually importance
sample the FULL rendering equation?

This is actually an incredibly important topic because, 
as you can imagine, the better your sampling strategy
is, the more viable path tracing becomes, the faster we
get nice-looking images with a low number of samples. 
So accurately importance sampling the renderin
equation is kindof the holy grail of path tracing, and an 
enormous amount of research is invested in this. There
are many methods use heuristics and statistics that can
get us a lot closer to an optimal sampling behavior, like 
multiple importance sampling, but there is still a lot of
room for improvement. Next time, we will actually hear
about multiple importance sampling and see how it will 
clean up our renderings even more. 
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Importance Sampling Summary

If we do Monte Carlo integration of , it’s best to use a sample 
distribution that closely mimics

For a desired , we can use the inversion method to get
the methods for generating samples and probability densities

If you cannot turn into a valid PDF, try to find a close match

When we transform samples between domains, we have to make
sure they have the desired distribution in the target domain!
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So to summarize, beyond the mathematical knowledge, 
here is what you should take with you after today‘s
lecture on importance sampling:

Whenever we do Monte Carlo integration, ist best to
find distributions for generating samples that
correspond exactly to the target function f(x).

If we have an f(x) that we want our PDF to mimic, we
can use the inversion method to come up with methods
for generating samples and probability densities with
the corresponding distribution, that can often be easily
put into code right away. 

However, if we have an idea about a good distribution
shape but cannot turn it into a PDF, a good idea is to



‹Nr.›

find as close an approximation as possible, and often this is
the only way because usually might not even know the exact
target function. 

Finally, if we have to integrate over non-trivial domains, we
can use bijective transformations and draw our samples in 
one domain and transform them to another. But when we do 
that, we have to account for the fact that transformations can
shift the distributions of our samples and account for that
when we generate the samples. 
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Today’s Roadmap
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What exactly are CDFs and PDFs?
What is the inversion method?

How to sample arbitrary functions?
What’s the fastest way to cosine-
weighted hemisphere sampling?

The Inversion 
Method

Sampling the 
Unit Disk

Required 
Background 
(CDF, PDF)

Importance Sampling 
for the Diffuse BRDF

Sampling the 
Hemisphere

Importance 
Sampling Unlocked!

Sampling the Unit Disk 2: 
Crossing Domains

If you came this far without giving up, you have 
successfully unlocked importance sampling, and we 
recommend that you try apply your new-learned skills 
to figure out cosine-weighted hemisphere sampling and 
perhaps even implement it in your path tracer from 
before. But if it all seems a bit overwhelming right now, 
we encourage you to revisit the earlier sections or 
check out the links on the next slide to get a little extra 
input. 
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As always, here are a few helpful references that might 
give you some extra information, especially if you lost 
track during the math-heavy part, these might help you 
out there so that you feel more comfortable with the 
steps we discussed. 

We hope you had a good time and picked up 
something useful from today’s lecture.

We will end it here, thank you sticking around until the 
end and we hope to also see you next time. 


