
1

Rendering: Importance Sampling

Bernhard Kerbl

Research Division of Computer Graphics
Institute of Visual Computing & Human-Centered Technology

TU Wien, Austria
With slides based on material by Jaakko Lehtinen, used with permission

Welcome back to this lecture on Rendering. Our topic
today is an extremely important one, that is, Importance
Sampling

2

Today’s Goal

Improve the efficiency of Monte Carlo with importance sampling

Understand how we can produce custom distributions in simple 1D,
2D and 3D domains by warping simple, uniform random variables

Learn how we can transform samples between cartesian and non-
cartesian domains (e.g., from polar to XYZ vectors)

Understand how we can incorporate these steps into path tracing

Rendering – Importance Sampling 2

Importance sampling will enable us to significantly raise
the effectiveness of Monte Carlo integration, compared
to how we did it up until now.

Until now, we used only uniform sampling for the
hemisphere. We gave you a few simple functions for
generating and compensating for samples on the
hemisphere surface.

This time, not only are we going to derive how these
functions came to be, we are also going to learn about
the mathematical background and the tools that we
need so that we can derive arbitrary sampling
strategies, because some of them will be much better
than uniform sampling. We will show you how to do this
in 1D, 2D and even 3D on the hemisphere, and all that
we will need as input will be simple random variables,
that every modern computer can produce. Since the
hemisphere is a special domain, we will also have to

‹Nr.›

look at how we can come up with sampling strategies that
achieve a particular distribution on these non-trivial domains.
And lastly, after sitting through all the related math, you will
quickly see how this ties nicely into our path tracer.

3

Importance Sampling

All these things sound tedious… why do we need to create samples
from arbitrary distributions? In different domains even?

When we sample, e.g., the hemisphere, we can use any PDF we like

We know the selection of the proper as importance sampling
Rendering – Importance Sampling 3

𝑓(𝑥)

𝑝(𝑥)

𝑓(𝑥)

𝑝(𝑥)

Bad sampling (high variance) Importance sampling (low variance)

No beating around the bush, there will be a wall of math
between you and the end of this lecture. But we cannot
simply stick with uniform sampling, because choosing
appropriate sampling distributions is a key ingredient to
make Monte Carlo integration perform better.

Whenever we try to integrate a function over a domain,
such as the hemisphere, we are free to choose the
sample PDF, or distribution, as long as we can make
samples in the domain that follow this distribution. And
ideally, if we have the choice, we will try to make an
informed decision, so that the sample distribution
mimics the function itself as closley as possible.
Becuase when we do that, that is what we call
importance sampling, and we already derived that it
has immense benefits for the estimation quality of
Monte Carlo.

4

Importance Sampling

Remember: if possible, you want a PDF that mimics !

Rendering – Importance Sampling 4

In the Monte Carlo lecture, we saw that the variance of
the Monte Carlo estimator for integrating a function f(x)
is lowest, actually 0, when the sample distribution PDF,
p(x), is proportional to the actual function we are trying
to integrate. Lower variance means less noise, and the
faster we get rid of the noise in our renderings, the
faster the image quality improves.

Now, if we knew what f(x) was and could normalize it,
then we could just use that and have an optimal
distribution. But this is a paradox: if we were able to
normalize f(x), that would imply we know its definite
integral. If we knew the definite integral of f(x), then we
wouldn’t need Monte Carlo to approximate it in the first
place. To illustrate this for our special case, it means if
we had perfect and total knowledge of how light
bounces through a scene, we wouldn’t need path
tracing to come up with an image. But in our case and
many others, this perfect knowledge of f(x) is

‹Nr.›

unobtainable. However, we can usually make good
approximations, and find distributions p(x) that are
reasonably close to f(x). Let’s see an example of how this
could work.

5

Let’s look at an application for importance sampling in practice

Consider a target function

You want to compute its integral,
but have no closed-form solution
or can only measure ad-hoc?

Clearly, a case for Monte Carlo

Monte Carlo Integration with Importance Sampling

Rendering – Importance Sampling 5

Here‘s an unknown function, f(x). We want to compute
ist integral in a certain range, but we have no closed-
form solution. What can we do about it?

Clearly, this is a case for Monte Carlo. With any
reasonable sampling strategy, the more samples we
will throw at it, the better our approximation will get.

6

If we take another look, the shape of this function seems familiar…

It appears to be quite close to ଶ!

We already know that uniform
sampling of is only one way
to do Monte Carlo integration…

Let’s try instead with ଶ

Monte Carlo Integration with Importance Sampling

Rendering – Importance Sampling 6

But hold on, the shape of this function actually looks
quite familiar. There are a few fluctuations in it, but ist
base shape is actually VERY close to x squared.

We already did monte carlo integration with uniform
sampling, so we may now try our hand at using
something else. WE are going to go ahead, and try to
compute the integral of the function in two different
ways: once with uniform sampling and once with a
strategy where samples are distributed proportionally to
x squared. Let‘s see how the versions compare.

7

Both methods converge
towards the same result

But the importance-sampled
method converges quicker!

Let’s see what the code
behind it looks like..

Uniform vs Importance Sampling (Python)
integrate_mc(0, 100, N, f, p_uniform, gen_uniform) vs integrate_mc(0, 100, N, f, p_x2, gen_x2)

Rendering – Importance Sampling 7

Here we see, up top, the two invocations that we did in
python to launch the process. Both methods integrate
in the range from 0 to 100, and both get to use a
varying number of samples to do so. On the right, we
plot what result the two methods come to with each
given number of samples N.

Clearly, both methods converge to the same result,
around 1700. But the method that uses importance
sampling got there much much quicker. Imagine, how
much we could improve our rendering procedures if we
could also make our Monte Carlo integration that much
more effective!

Let‘s see how we did that in code, and maybe this is all
straight forward and we can reproduce something
similar immediately…

8

Uniform vs Importance Sampling (Python)

Rendering – Importance Sampling 8

integrate_mc(0, 100, N, f, p_uniform, gen_uniform) vs integrate_mc(0, 100, N, f, p_x2, gen_x2)

def integrate_mc(a: float, b: float, N: int, f, p, gen):
X = gen(a, b, N)
estimates = f(X)/p(X, a, b)
result = estimates.sum() / N
return result

def p_uniform(x, a: float, b: float):
return 1/(b-a)

def p_x2(x, a: float, b: float):
b3 = ((b**3)/3)
a3 = ((a**3)/3)
return x**2/(b3-a3)

def gen_uniform(a: float, b: float, N: int):
xi = np.random.rand(N)
return xi * (b - a) + a

def gen_x2(a: float, b: float, N: int):
xi = np.random.rand(N)
b3 = (b**3)
a3 = (a**3)
return (a3+xi*(b3-a3))**(1.0/3.0)

By the end of the day, this
should make sense to you!

Ok, the main loop looks ok, this is just a basic monte
carlo integration procedure, which takes a method for
generating samples and sums them up, weighted by
the PDF and eventually computes a mean. We saw this
quite a few times already. But whats interesting are the
functions we are passing in for sampling according to x
squared. Those are the functions p_x2 and gen_x2
here, which take uniform random variables and the
targeted integration interval as parameters.

And… they don‘t look straightforward. The
computations in them are not too complicated, but the
question is, why do we cube the ranges of the
integration interval, why the division by 3, why a cube
root in the generation function? These things look
somewhat arbitrary. And in comparison, x^2 is a rather
simple distribution, so what might the sample

‹Nr.›

generators for other functions look like? The good news is
that, if you pay close attention to the methods we describe in
the first half of this lecture, you should be able to come up
with functions like these, and much more complicated ones,
yourself, which gives you the skills to apply your own
importance sampling solutions in the future.

9

Before, we did uniform hemisphere sampling, and it worked

But perhaps we can also use
importance sampling here?

Can we perhaps importance-sample
the rendering equation?

The hemisphere is a peculiar domain. Sampling it with arbitrary
distributions is a little bit more complex…

Importance Sampling on the Hemisphere

Rendering – Importance Sampling 9

Once we know how to do this, we are going to
approach the hemisphere. It is a little special, so first of
all, we will have to analyze this domain and see how we
can integrate over its surface. For those who were
wondering before, we will also derive the solution for
uniform hemisphere sampling in the process.

But imagine what we could do if we unlock importance
sampling on the hemisphere as well. Perhaps we could
try to importance sample the rendering equation itself
and immediately get clean, noiseless images with just a
few samples? We will talk about what exactly is and
isn’t possible when we get there. But, just as a heads-
up, we will be able to clearly improve the quality of our
renderings in our path tracer from. The fact of the
matter is that, the solution to do this will only involve a
few lines of code, so if you don’t care about the

‹Nr.›

background or about understanding the math that makes
importance sampling tick, we will actually provide you with a
shortcut to the corresponding solutions in the second half of
this lecture.

But we still hope that you are willing to also pay attention to
the theoretical background in case you ever need to dig
deeper than importance sampling only the most basic
functions.

Ok, let’s get to it!

10

Today’s Roadmap

Rendering – Importance Sampling 10

What exactly are CDFs and PDFs?
What is the inversion method?

How to sample arbitrary functions?
What’s the fastest way to cosine-
weighted hemisphere sampling?

The Inversion
Method

Sampling the
Unit Disk

Required
Background
(CDF, PDF)

Importance Sampling
for the Diffuse BRDF

Sampling the
Hemisphere

Importance
Sampling Unlocked!

Sampling the Unit Disk 2:
Crossing Domains

Here we have today’s roadmap. We will begin by
looking at some of the background that we need, talk
about the PDF again and related concepts, which will
lead us directly to the inversion method. Once we have
seen how the inversion method can be used to make
samples from arbitrary distributions, we will try to make
them not only for 1D and 2D functions, but we will also
see how we can sample a more demanding domain,
that is the unit disk. We will do this in two ways, once
with geometric reasoning and once with the formal
method for transforming samples between cartesian
and non-cartesian domains. After we have mastered
the unit disk, we will dare to move on to the hemisphere
and derive the solution for uniform sampling in this new
domain. Finally, we will combine the inversion method
with the transformation of samples to achieve
importance sampling on the hemisphere, and we will
look at a concrete example for exploiting it in a path

‹Nr.›

tracer to improve the image quality.

11

Today’s Roadmap

Rendering – Importance Sampling 11

What exactly are CDFs and PDFs?
What is the inversion method?

How to sample arbitrary functions?
What’s the fastest way to cosine-
weighted hemisphere sampling?

The Inversion
Method

Sampling the
Unit Disk

Required
Background
(CDF, PDF)

Importance Sampling
for the Diffuse BRDF

Sampling the
Hemisphere

Sampling the Unit Disk 2:
Crossing Domains

Importance
Sampling Unlocked!

First off, we will look at some basic concepts that we
need, then we will introduce the CDF, the cumulative
distribution function, and drill down into the formal
definition of the PDF which have already been using.
But before we can do this, let’s start with a quick recap
of random variables.

12

Discrete Random Variables

In daily life, we are mostly confronted with discrete random results
A coin flip
Toss of a die
Cards in a deck

Each possible outcome of a random variable is associated with a
specific probability . Probabilities must sum up to

E.g., a fair die: and ଵ ଶ ଺
ଵ

଺

Rendering – Monte Carlo Integration I 12

13

Continuous Random Variables

A continuous random variable with a given range can
assume any value ௜ that fulfills ௜

Working with continuous variables generalizes the methodology for
many complex evaluations that depend on probability theory

There are infinitely many possible outcomes and, consequently,
the observation of any specific event has with vanishing probability

How can we find the probabilities for continuous variables?[2]

Rendering – Importance Sampling 13

14

Cumulative Distribution Function (CDF)

For continuous variables, we cannot assign probabilities to values

The cumulative distribution function (CDF) lets us compute the
probability of a variable taking on a value in a specified range [2]

We use notation ௑ for the CDF of ’s distribution, which yields
the probability of taking on any value

Rendering – Importance Sampling 14

0 1

If 𝑋 can take on any value with equal probability, what is the probability of 𝑋 = 0.5?

?

15

௑ ௑ ௜

Read as:

Example: uniform variable
generates values in range [0, 1):

𝑃క 𝑥 = 𝑥

𝑃క 0.75 − Pక 0. 5 = 0.25

Probability for a Range with CDF

Rendering – Importance Sampling 15

𝑦

𝑥0 1

1

𝑃(𝑥)

16

Properties of the CDF

CDF is bounded by [0, 1] and monotonic increasing
Probability of no outcome is 0, the probability of some outcome is 1
Die: Rolling a number between 1 and 6 cannot be less probable
than rolling a number between 1 and 5

CDFs can be applied for discrete
and continuous random variables

How do we compute the CDF?

Rendering – Importance Sampling 16

𝑦

𝑥0

1
𝑃(𝑥)

17

Determine the limits of your variable
For each outcome, find its probability ௔ ௕

The CDF of that variable is then a function ௑ ௜
௫
௜ୀ௔

Computing the CDF for Discrete Random Variables

Rendering – Importance Sampling 17

𝑥0

1

𝑝଴ 𝑝଴ 𝑝଴ 𝑝଴

𝑝ଵ 𝑝ଵ 𝑝ଵ

𝑝ଷ

𝑝ଶ𝑝ଶ

𝑥0

1

𝑝଴ 𝑝ଵ

𝑝ଷ
𝑝ଶ

Outcome Probabilities Cumulated Probabilities (CDF)

18

Probability Density Function (PDF)

The PDF is the derivative of the CDF : ௗ௉(௫)

ௗ௫

For a PDF , and ௕

௔

must be positive everywhere: a negative value would mean we
can find such that ௕

௔
has a negative probability

௑ can be understood as the relative probability of ௜

I.e., if ௑ ௑ , then ௜ is twice as likely as ௜

Rendering – Importance Sampling 18

19

Notes about the PDF

Notation may look like probability, but PDF values can be >1!

For both discrete and continuous variables, we can reference
“ ” to describe their distribution

Summary: for a continuous variable with a known, integrable PDF,
we can find the CDF and probabilities of landing in a given range

…is this actually helpful?

Rendering – Importance Sampling 19

20

Today’s Roadmap

Rendering – Importance Sampling 20

What exactly are CDFs and PDFs?
What is the inversion method?

How to sample arbitrary functions?
What’s the fastest way to cosine-
weighted hemisphere sampling?

The Inversion
Method

Sampling the
Unit Disk

Required
Background
(CDF, PDF)

Importance Sampling
for the Diffuse BRDF

Sampling the
Hemisphere

Importance
Sampling Unlocked!

Sampling the Unit Disk 2:
Crossing Domains

This brings us to our next big topic in today’s agenda,
that is, the inversion method. We will see how
incredibly useful the our new-found knowledge about
the CDF is and how we can use the inversion method
to exploit it and let us perform importance sampling
with a wide range of target functions in 1D and 2D.

21

Creating Variables with Custom Distributions

By discovering the CDF, we have found a powerful new tool

The function is often invertible: this means, we can generate
random variables with a desired distribution!

Rationale: Since the CDF is monotonic increasing, there is a unique
value of ௑ for every with ௑

More informally, if we plot a 1D CDF, any value that can take on
has a unique, corresponding coordinate on the -axis

Rendering – Importance Sampling 21

22

Basic Sampling with Canonical Random Variables

We want to generate samples for a custom distribution from a
random input that we can easily obtain in a computer environment

Our assumed input is the canonical random variable
continuous (i.e., a real data type)
with uniform distribution
in the range [0, 1)

Goal: warp samples of to ones distributed according to some

Rendering – Importance Sampling 22

23

The Canonical Random Variable

Our assumed default input variable

PDF for is in range and everywhere else

CDF for is linear

Important property: we have equality ௜ ௜

Rendering – Importance Sampling 23

24

The Inversion Method

For discrete variables: we draw and iterate event probabilities
When their sum first surpasses , we have found ௜

For continuous variables: exploit ௑’s bijectivity and use its inverse!
We can use canonic to compute ௜ ௑

ିଵ according to ௑

Rendering – Importance Sampling 24

𝜉

0

1
𝑃(𝑥)

𝑋௜

𝜉

0

1

𝑋௜

𝑝଴ 𝑝଴ 𝑝଴ 𝑝଴

𝑝ଵ 𝑝ଵ 𝑝ଵ

𝑝ଷ

𝑝ଶ𝑝ଶ

And we can exploit this property in order to achieve
what we wanted to do before, namely to simulate a
random variable with a given PDF/CDF. And the way to
do that is by using a process called the Inversion
Method. If we have a random variable X with some
distribution, we can draw a sample from our canonical
random vraible XI and consider it as the output of X’s
CDF to find the value of X that would have generated it.
In the discrete case, we can simply iterate over the
outcome probabilities of X and stop at the event where
their sum surpasses our sample of XI. For the
continuous case, we can use the bijectivity of the CDF
and take its inverse. So the value of random variable X
that would produce the cumulative probability given by
our sample Xi is found via the inverse of X’s CDF.

25

Example: Exponential Distribution

Used mainly for estimation of time intervals between two events

The probability of a value decreases exponentially

Needs additional parameter , often called rate parameter

We can find its PDF and CDF in most probability text books
𝑝 𝑥, 𝜆 = 𝜆𝑒ିఒ

𝑃 𝑥, 𝜆 = 1 − eିఒ௫, 𝑃ିଵ 𝑥ᇱ, 𝜆 = −
୪୭୥(ଵି௫)

ఒ

Rendering – Importance Sampling 25

26

Warping Uniform To Exponential Distribution

Rendering – Importance Sampling 26

def warp_expx(X, lambda: float):
return –np.log(1.0 – X) / lambda

LAMBDA = 0.5

samples_uniform = np.random.rand(N)
samples_exp_ref = np.random.exponential(1.0/LAMBDA, N)
samples_exp_gen = warp_expx(samples_uniform, LAMBDA)

h1, h2, h3 = histograms(0.0, 1.0, 20, samples_uniform, samples_exp_ref, samples_exp_gen)

show_histogram(h1)
show_histogram(h2)
show_histogram(h3)

What we are doing here, is, we are basically putting
into practice what we just saw, we are computing the
inverse of the CDF and thereby simulating an
exponential distribution by warping the outputs of a
uniform distribution.

And in order to evaluate this, we are going to write a
simple python program that uses two different arrays of
random numbers from the numpy library, one with with
an exponential distribution for reference and one with
uniform distribution.

And what we are trying to do here is, we record all the
sample from the uniform and the reference distribution
so we can plot them later and, last but not least, we
also make a new array of values from the result we get
when we warp the uniform samples with the inverse of
the CDF which we computed on the last slide.

27

Histograms of generated samples

Warping Uniform To Exponential Distribution

Rendering – Importance Sampling 27

𝑋௜ = 𝑃௑
ିଵ 𝜉௜

𝜉௜

𝑅௜

𝑋௜

28

Mix Multiple Random Variables

Let’s add another variable and combine them for 2D output

In doing so, we are extending our sampling domain

The sampling domain is defined by
The number of variables, and
Their respective ranges

Think of the domain as a space with the axes representing variables

Rendering – Importance Sampling 28

So now that we saw that we can simulate individual
random variables form their PDFS, lets move to 2D. We
can generate some basic 2D distributions by combining
the output of two random variables. By doing so, we
are extending our sampling “domain”. When we talk
about multidimensional sampling, the domain defines
the number of random variables we are using and their
respective range. For the sake of visualization, we will
plot the domain as a space where the axes represent
the individual variables.

29

Joint PDF

If multiple variables are in a domain, the joint PDF probability
density of a given point in that domain depends on all of them

In the simplest case, with independent variables and , the joint
PDF of their shared domain PDF is simply ௑ ௒

We can sample independent variables in a domain by computing
and sampling the inverse of their respective CDFs, separately

Rendering – Importance Sampling 29

In a domain with multiple random variables, every
possible outcome is a combination of the values that
the random variables take on. Therefore, we define the
“joint” PDF for any such combination that defines a
point in this domain. In the simplest case, we have
independent variables X and Y, and if they are
independent, then the joint PDF for a point in their
shared domain is simply the product of the separate
PDFs for each coordinate. In this case, we can
simulate a 2D random variable by computing the
inverse of their individual CDFS and using the inversion
methods on them with outputs from two canonical
random variables.

30

2D with For , use గ

ଶ
and

௑

௑
ିଵ ିଵ

Inversion Method Examples in 2D

Rendering – Importance Sampling 30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Y

X

def gen_cosx(a: float, b: float, N: int):
xi = np.random.rand(N)
return np.arcsin(xi)

def p_cosx(x, a: float, b: float):
return np.cos(x)

X_i = gen_cosx(0, 1, 1000)
plot(X_i, np.random.rand(1000))

Here we see an example where we use a random
variable for the Y axis that mimics the canonical
random variable and another for the X axis where the
probability is distributed according to the cosine of x.
Since the cosine is 1 for input 0 and 1 for input pi/2, we
can see that the density of the samples decreases with
increasing x. The sampling of this 2D variable is
achieved by inverting their CDFs separately and
warping samples from two canonical random variables,
as shown in the code below.

31

and in range

For both variables, ଶ ିଵ

Inversion Method Examples in 2D

Rendering – Importance Sampling 31

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Y

X

def gen_2v(a: float, b: float, N: int):
xi = np.random.rand(N)
return np.sqrt(xi)

def p_2v(v, a: float, b: float):
return 2*v

X_i = gen_2v(0, 1, 1000)
Y_i = gen_2v(0, 1, 1000)
plot(X_i, Y_i)

Here we have another small example with variables X
and Y both in the range from 0 to 1, and for both
variables we are using the same linear PDF.

Again, we can sample this distribution by computing the
CDF, inverting it and using samples from different
canonical random variables as input. It may be difficult
to tell visually, but the joint PDF tells us that there are
approximately 4 times as many samples in the upper
right corner than there are at the center of the plot.

32

Let’s pick a slow-growing portion of the distribution function
Compared to cumulative density only doubles in

Choosing a Different Range

Rendering – Importance Sampling 32

𝑝 𝑥 = 2𝑥 𝑃 𝑥 = 𝑥ଶ (𝑙𝑜𝑔𝑝𝑙𝑜𝑡)

So let’s do a little variation on the last setup, and
instead of having variables in the range from 0 to 1, we
actually want them to replicate the behavior of a linear
PDF in the range from 2 to 4. This means that we
would see a smaller change in the density, because the
relative growth of the CDF is much smaller.

33

Try and in range

For both variables, ଶ ିଵ

Nothing happens.

How can we adapt variable ranges?

Something is missing!

Inversion Method Examples in 2D

Rendering – Importance Sampling 33

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5 1 1.5 2 2.5 3 3.5 4

Y

X

So if we apply the same recipe as before… nothing
happens. If we plot a higher range, we see that the
samples are the same as before, which is no surprise
because our CDF and inverse CDF are also identical.
So apparently we are missing some steps if we want to
applyt the inversion method to arbitrary setups. Let’s
look at the missing steps right now.

34

Consider a given range from to for a variable and a candidate
PDF with the desired distribution shape

If ௕

௔
, is not a valid PDF for this variable

The probability that the result is one of all possible results

To fix this, we compute the proportionality constant ௕

௔

and compute a valid ி(௫)

௖
and ௙(௫)

௖

Restricting the PDF / CDF

Rendering – Importance Sampling 34

First, what we need is to ensure that we enforce the
necessary on the PDF and CDF we are using
restrictions. For now, let’s talk about the distribution we
want our variable to have as the PDF CANDIDATE f(x).
Remember that we said that a CDF is bounded from
above by 1. That means that, if we have a random
variable with a specified range, the integral of the PDF
over that range must equal to 1. If this is not the case, it
corresponds to saying that the probability of the
variables outcome being one of all possible outcomes
is not 100%, which is a paradox. To fix this, we can
compute proportionality constant by finding the value
that f(x) integrates to over the full range and divide
f(x)’s antiderivative by it to get the CDF. This ensures
that CDF adheres to its necessary restrictions while
making the PDF p(x) proportional to the candidate
function f(x).

35

For range where , we add
a constant offset

Try and again

We compute ௒ ௑
ସ

ଶ
and add ସ

ଵଶ
to get:

௩మିସ

ଵଶ
ିଵ , ଶ௩

ଵଶ

Restricting the PDF / CDF

Rendering – Importance Sampling 35

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

2 2.5 3 3.5 4

Y

X

If we are looking at ranges that do not start with 0, we
also need to add a constant offset to the CDF. If our
variable ranges from a to b, then we subtract the value
that the CDF would produce for input a. This is valid
because we defined the CDF to be the PDFs
antiderivative, and remember that antiderivatives can
include arbitrary constant factors, because those fall
away when we differentiate. With this in mind we try our
setup from before again, but this time apply the
proportionality constant and the correct offset. As we
can see in the updated plot, this now produces samples
with the expected growth in density and in the expected
range.

36

The Inversion Method, Completed

Find a candidate function with the desired distribution shape

Choose the range in you want your variable to imitate

Determine the indefinite integral

Compute the proportionality constant

The CDF for the new variable is ௑
ி ௫ ିி(௔)

௖

Compute the inverse of the CDF ௑
ିଵ

Use ௑
ିଵ to warp the samples of a canonic random variable

so that they are distributed with ௙(௫)

௖
in the range

Rendering – Importance Sampling 36

So finally, we have the inversion method for simulating
random variables with custom distributions completed.
To summarize, let’s go over the individual steps we
need to do once more.

First, we identify a candidate function f(x) that we want
for the distribution of values in our random variable,

Second we choose the range inside the candidate
function that our variables distribution should imitate

We then compute the indefinite integral, or antiderivate
of the candidate PDF to get a candidate CDF

We find the proportionality constant and the final CDF
by subtracting the offset and dividing by the c

We then inver the CDF and from now on we can use
the inverse to compute warped samples with the
desired distribution by using samples from the
canonical random variable as input

37

Deriving the ଶ Sample Generation Functions
integrate_mc(0, 100, N, f, p_uniform, gen_uniform) vs integrate_mc(0, 100, N, f, p_x2, gen_x2)

def integrate_mc(a: float, b: float, N: int, f, p, gen):
X = gen(a, b, N)
estimates = f(X)/p(X, a, b)
result = estimates.sum() / N
return result

def p_uniform(x, a: float, b: float):
return x/(b-a)

def p_x2(x, a: float, b: float):
b3 = ((b**3)/3)
a3 = ((a**3)/3)
return x**2/(b3-a3)

Rendering – Importance Sampling 37

Now that we have completed the inversion method, it is
a good time to look back at the example that we looked
at in the beginning. Remember how we found that
sampling a particular function with a distribution
proportional to x squared worked much better than
uniform sampling. But the code that we used to do it
was somewhat unintuitive. Now that we have mastered
the inversion method, let‘s look at it once more.

38

integrate_mc(0, 100, N, f, p_uniform, gen_uniform) vs integrate_mc(0, 100, N, f, p_x2, gen_x2)

def integrate_mc(a: float, b: float, N: int, f, p, gen):
X = gen(a, b, N)
estimates = f(X)/p(X, a, b)
result = estimates.sum() / N
return result

def p_uniform(x, a: float, b: float):
return 1/(b-a)

def p_x2(x, a: float, b: float):
b3 = ((b**3)/3)
a3 = ((a**3)/3)
return x**2/(b3-a3)

Deriving the ଶ Sample Generation Functions

Rendering – Importance Sampling 38

𝐹 𝑥 =
𝑥ଷ

3
, 𝑐 =

𝑏ଷ − 𝑎ଷ

3
,

𝑝 𝑥 =
𝑥ଶ

𝑐
,

𝑃௑
ିଵ 𝜉 = 𝑎ଷ + 𝜉(𝑏ଷ − 𝑎ଷ)

య
,

def gen_uniform(a: float, b: float, N: int):
xi = np.random.rand(N)
return xi * (b - a) + a

def gen_x2(a: float, b: float, N: int):
xi = np.random.rand(N)
b3 = (b**3)
a3 = (a**3)
return (a3+xi*(b3-a3))**(1.0/3.0)

And you should confirm for yourself that, in fact, when
we follow the recipe for the inversion method, we arrive
at the solution that is implemented by these functions.
We first compute the indefinite integral, then the
proportionality constant, and then use it to get a valid
PDF and a CDF, which we then invert. The function
p_x2 gives the code for a valid PDF, and the function
gen_x2 produces samples, according to the inverse of
the CDF. I hope that you can appreciate how cleanly
these mathematical concepts that we just developed
can be applied in code to give us a desired behavior,
but if not that‘s ok too :)

That already takes care of the first big leap for today.
But now we are going for a real challenge: solutions for
arbitrary sampling strategies with non-cartesian
domains!

39

Today’s Roadmap

Rendering – Importance Sampling 39

What exactly are CDFs and PDFs?
What is the inversion method?

How to sample arbitrary functions?
What’s the fastest way to cosine-
weighted hemisphere sampling?

The Inversion
Method

Sampling the
Unit Disk

Required
Background
(CDF, PDF)

Importance Sampling
for the Diffuse BRDF

Sampling the
Hemisphere

Importance
Sampling Unlocked!

Sampling the Unit Disk 2:
Crossing Domains

But before we do this directly on the hemisphere, we
are going to start small and first try our hand at
something a little simpler: the unit disk.

40

Sampling a Unit Disk

Imagine we have a disk-shaped surface with radius that
registers incoming light (color) from directional light sources

As an exercise, we want to approximate the total
incoming light over the disk’s surface area

We integrate over an area of size

We will use the Monte Carlo integral for that

Rendering – Importance Sampling 40

2

2
r = 1

Before we move to the hemisphere, we start off with a
smaller step in the right direction, that is sampling the
unit disk.

Imagine that we have a disk-shaped surface, and we
can measure the light that arrives at each point as an
RGB color.

Now in order to get a measure of the full light that the
disk receives, we want to sample and integrate over the
surface.

To start off, we will want to generate uniformly
distributed samples in 2D, but this time there is a catch:
we want to distribute samples evenly

On the surface of a unit disk with radius 1 instead of a
rectangular area. For rectangular areas, we saw that
we can just take two independent uniform variables and
sample them separately.

It is not so simple for the unit disk.

‹Nr.›

For now, we know that the surface area of the unit disk, is of
size pi, so we will keep that information in mind.

41

Uniformly Sampling the Unit Disk

If we can manage to uniformly sample the disk, then we can
compute the Monte Carlo integral as a simple average

By drawing uniform samples in and ,
we cannot cover the area precisely

Inscribed square: information lost

Circumscribed square: unnecessary samples

Rendering – Importance Sampling 41

From the Monte Carlo lecture, we know that if we can
uniformly sample a domain, then the Monte Carlo
integral is a simple average times the volume of the
domain.

But if we simply draw samples from uniform variables in
x and y, we cannot cover the circle of the disk precisely.

42

Uniformly Sampling the Unit Disk

If we can manage to uniformly sample the disk, then we can
compute the Monte Carlo integral as a simple average

By drawing uniform samples in and ,
we cannot cover the area precisely

Inscribed square: information lost

Circumscribed square: unnecessary samples

Rendering – Importance Sampling 42

43

Uniformly Sampling the Unit Disk

If we can manage to uniformly sample the disk, then we can
compute the Monte Carlo integral as a simple average

By drawing uniform samples in and ,
we cannot cover the area precisely

Inscribed square: information lost

Circumscribed square: unnecessary samples

Rendering – Importance Sampling 43

If we want to enclose the unit disk with cartesian
coordinates, we can look at x and y coordinates from -1
to 1.

But, inside that 2x2 area, the unit disk only occupies
only an area of size of pi out of the total 2x2 area.

So we will necessarily be placing redundant samples
that land outside the disk.

Since there is no light measured outside of the disk,
those samples are worthless.

44

Back to the Unit Disk

We do not want to waste samples if we can avoid it

Instead, find a way to generate uniform samples on the disk

Create samples in a non-cartesian domain: 2D polar coordinates
Polar coordinates defined by radius 𝑟 ∈ [0,1) and angle 𝜃 ∈ [0,2𝜋)

Transformation to cartesian coordinates:
𝑥 = 𝑟 cos 𝜃
y = 𝑟 sin 𝜃

Rendering – Importance Sampling 44

So second attempt to sample the unit disk. Lets find a
way to generate inherently uniform samples without
throwing them away.

There are other ways to sample a 2D plane. We have a
coordinate system that is also 2-dimensional but where
we can easily limit points to a disk of given extent.
We’re talking about polar coordinates.

Polar coordinates around a given origin are defined by
a radius r and angle theta in the range from 0 to 2pi.
For the unit disk, we will use a radius of 1.

The transformation from polar coordinates to cartesian
coordinates is as follows: x = r times the sine of theta
and y is r times the cosine of theta.

45

Uniformly Sampling the Unit Disk?

Convert two to ranges to get polar coordinates

Convert to cartesian coordinates

Rendering – Importance Sampling 45

void sampleUnitDisk()
{

std::default_random_engine r_rand_eng(0xdecaf);
std::default_random_engine theta_rand_eng(0xcaffe);

std::uniform_real_distribution<double> uniform_dist(0.0, 1.0);

for (int i = 0; i < NUM_SAMPLES; i++)
{

auto r = uniform_dist(r_rand_eng);
auto theta = uniform_dist(theta_rand_eng) * 2 * M_PI;
auto x = r * sin(theta);
auto y = r * cos(theta);

samples2D[i] = std::make_pair(x, y);
}

}

So this seems like a good solution: We generate
uniform samples in polar coordinates, where samples
can be naturally limited to a disk by a maximum
parameter for r and then convert them to cartesian
coordinates to get points in x,y! So let’s try this right
away.

46

We successfully sampled the unit disk in the proper range

However, the distribution is not
uniform with respect to the area

Samples clump together at center

Averaging those samples will give
us a skewed result for the integral!

Clumping

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

Rendering – Importance Sampling 46

Except, not exactly, because, unfortunately, uniformly
distributed samples in polar coordinates are NOT also
uniformly distributed in cartesian coordinates, Since we
wanted to sample the surface area uniformly, this
distribution will not do because samples clump together
at the center. And the fact of the matter is, if sample
distribution and PDF don’t match, that is, if we treat a
non-uniform distribution as if it were uniform during
monte carlo integration, we will get a wrong result for
our integral. So how do we fix this?

You can pause the video here and take five or ten
minutes to try and come up with a solution for yourself
if you like.

47

Uniformly Sampling the Unit Disk: A Solution

The area of a disk is proportional to ଶ, times a constant factor

If we see the disk as concentric rings of width , the inner rings

up to radius ௝ should contain
௥ೕ

௥

ଶ
out of total samples

Conversely, the ௧௛ sample should lie in the ring at radius ௜
௜

ே

Since is uniform in , we can switch ௜

ே
for ௜ to get ௜ ௜

Rendering – Importance Sampling 47

Ok, so let’s take a step back, think about the issue
again and try to solve this smartly.

We know that the area of a disk is r squared times pi

Consider a sample budget of N samples and try to
distribute them evenly over the surface of the disk

If we interpret the disk as many, slim concentric rings of
width delta r, then the inner j rings up to radius j times
delta r should contain rj over r squared times N of the
grand total N samples that we are using

We can invert this figure to find that, if we want to
distribute samples uniformly, given the radius r, then the
i/th sample should lie in the ring that covers the radius r
times square root of i over N.

Since we know that the order of samples along our
domain axes doesn’t matter in monte carlo integration,

‹Nr.›

we could swap the coordinate i/N for a canonic random
variable, and we get r_i = r times sqare root of the output
from a canonical random variable.

We don’t need to make a change for theta, because we saw
that the distribution doesn’t vary with the angle.

48

Uniformly Sampling the Unit Disk: A Solution

It works, and it is not even a bad way to
arrive at the correct solution

However, for more complex scenarios, we
might struggle to find the solution so easily

With the tools we introduced earlier (and a
few new tricks), we can formalize this process
for arbitrary setups!

Rendering – Importance Sampling 48

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

So let’s make this change. Instead of uniformly
sampling r, we compute it as the square root of a
canonical random variable times r.

It works indeed, and it is not even a bad way to arrive
at the correct solution

However, if you pursue rendering into its professional
domain, you will find that you won’t be able to derive
the solution for other sampling domains so easily.

You can take this solution and apply it and it will work
fine. But we will show you a more formal solution so
that you also have the necessary tools if you have to
solve more complex tasks than this. So what follows is
a formal method to achieve uniform sampling of

‹Nr.›

random variables with under transformations.

49

Today’s Roadmap

Rendering – Importance Sampling 49

What exactly are CDFs and PDFs?
What is the inversion method?

How to sample arbitrary functions?
What’s the fastest way to cosine-
weighted hemisphere sampling?

The Inversion
Method

Sampling the
Unit Disk

Required
Background
(CDF, PDF)

Importance Sampling
for the Diffuse BRDF

Sampling the
Hemisphere

Importance
Sampling Unlocked!

Sampling the Unit Disk 2:
Crossing Domains

This brings to our next stop, part 2 of the chapter for
sampling the unit disk. This time, we will do it by
mathematically analyzing and compensating for the
effect that a transformation of samples from one
domain to the other has on their distribution.

50

Another Look at the PDF

Rendering – Importance Sampling

We saw samples being “warped”: we can interpret the inversion
method as a spatial transformation of uniform samples

Let’s treat the space in the input domain like a grid of infinitesimal
hypercubes: segments in 1D, squares in 2D and cubes in 3D[5]

If we warp a domain where each variable is to one with joint PDF

஽, then ଵ

௣ವ
is the change in volume of the hypercubes after warping

50

So let’s take a step back for a moment and look at the
PDF from a different angle. We saw 2D samples being
“warped” into a new, 2D distribution, and we can
interpret this warping as a transformation of the space
from the input domain to a target distribution. If we
convert uniformly spaced input samples with the
inversion method, we usually don’t get uniformly
spaced outputs.

Let’s treat some tiny, regular interval in the input
domain as an infinitesimal hypercube: a hypercube is a
line in 1D, a square in 2D and a cube in 3D. If we warp
the inputs of canonic variables as we did before to
samples of a distribution with a joint PDF pD, then we
can express the change in the volume of these
hypercubes by 1 over pd.

51

Visualizing the PDF in 2D

The left represents our inputs and the right our target distribution
This time, we warp grid coordinates with the inversion method

Rendering – Importance Sampling 51

ξଵ, ξଶ 𝑌 = ξଶ and 𝑋 ∈ 0,1 , 𝑝௑ 𝑥 = 2𝑥

Here we have on the left our input variables, Xi 1 and Xi
2, and we plot a regular grid over the entire 2D input
domain. On the right-hand side, we will plot the same
grid coordinates after we warp them with the inversion
method to produce the distribution given below, which
is uniform for y coordinates and linear for x coordinates.

52

ξଵ, ξଶ

The areas of all 2D hypercubes (grid cells) are scaled by ଵ

௣೉ ௫ ௣ೊ(௬)

௑ , cells on the right at are half their original width

Visualizing the PDF in 2D

Rendering – Importance Sampling 52

𝑌 = ξଶ and 𝑋 ∈ 0,1 , 𝑝௑ 𝑥 = 2𝑥

And we can see that if we do that, the areas of all 2D
hypercubes are scaled by the facter 1 over px(x).

Note that, after the transformation, the rectangles on
the very right are approximately half as wide as the
original ones

53

Earlier, we saw samples with ௑ ௒

Visualizing the PDF in 2D

Rendering – Importance Sampling 53

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

2D Variables with Linear PDFs

54

In this 2D setup, we have joint PDF ௑ ௒

Space near point is compressed down to ଵ
ସ

of its original size

Visualizing the PDF in 2D

Rendering – Importance Sampling 54

ξଵ, ξଶ 𝑋, 𝑌 ∈ 0,1 , 𝑝௑ 𝑥 = 2𝑥, 𝑝௒ 𝑦 = 2𝑦

55

This PDF compresses space at higher values of , dilates at lower
If space shrinks or grows, samples in it become denser or sparser

Visualizing the PDF in 2D

Rendering – Importance Sampling 55

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ξଵ, ξଶ 𝑋, 𝑌 ∈ 0,1 , 𝑝௑ 𝑥 = 2𝑥, 𝑝௒ 𝑦 = 2𝑦

And if we plot once again the samples that are
generated by the canonical random input variables and
again after the transformation to a distribution with the
desired PDF, we can see that the space that was
occupied before by a small hypercube has now been
expanded, and with it the distance between the
samples in this region.

So in summary, an alternative way to interpret the PDF
is to take its reciprocal and treat 1/ the pdf as the
change of the volume for infinitesimally small regions at
given points.

56

Let’s transform a regular grid from polar to cartesian coordinates

Polar To Cartesian Coordinates

Rendering – Importance Sampling 56

𝑋 = 𝑟 cos(𝜃)
𝑌 = 𝑟 sin(𝜃)

𝑟

𝜃

Right away, let us convert a regular grid from polar to
cartesian coordinates. What happens if we do that?

We can see that some squares in the grid are squished
together, while others are expanded, depending on
where they are in polar coordinates.

Remember when we interpreted the reciprocal of the
PDF as a transformation of hypercube volume? So we
can see that the transformation from polar to cartesian
coordinates seems to have a clear effect on the PDF.
And we can make this even more clear.

57

Take 100k samples, transform and see in which square they end up

First Attempt to Learn the PDF

Rendering – Importance Sampling 57

𝑋 = 𝑟 cos(𝜃)
𝑌 = 𝑟 sin(𝜃)

Here is the same transformation, but now instead of a
grid with uniformly created random points from polar
coordinates to cartesian coordinates.

We already know and see that this distribution doesn’t
look uniform, but we can still visualize it a bit more
clearly

58

Take 100k samples, transform and see in which square they end up

First Attempt to Learn the PDF

Rendering – Importance Sampling 58

ξଵ, ξଶ 𝑋 = 𝜉ଵ cos(2𝜋𝜉ଶ), 𝑌 = 𝜉ଵ sin(2𝜋𝜉ଶ)

The PDF in the source and target domain for a
particular sampling strategy after is actually quite easy
to visualize. All you have to do is subdivide your target
domain into bins, generate a number of samples and
then count how many of them end up in each box.
Optionally you can normalize the counters to get the
actual density values for each bin. Note that by making
it discrete in this way, what we see is technically a
probability MASS function now rather than a probability
density function, but for an infinite number of bins, they
are the same. What we see confirms what we saw
earlier: after transforming uniform samples in polar
coordinates to cartesian ones, the density is much
higher at the center of the disk.

So we know we need the transformation from polar to
cartesian coordinates to make samples inside a disk.

‹Nr.›

But we also know that this transformation changes our
sample distribution!

59

Knowing the PDF

If we know the effect of a transformation on the PDF, we can
Use it in the Monte Carlo integral to weight our samples, or
Compensate to get a uniform sampling method after transformation

Rendering – Importance Sampling 59

𝐼𝑛𝑝𝑢𝑡 (𝜉ଵ, 𝜉ଶ) 𝐶𝑎𝑟𝑡𝑒𝑠𝑖𝑎𝑛 (𝑥, 𝑦)

𝑃𝑜𝑙𝑎𝑟 (r, 𝜃)

𝑇(𝑟, 𝜃)
Scale +

compensate

Now our goal is to find out exactly what this change to
the PDF is when samples are being transformed. If we
can quantify this effect, we could

Use it weight samples during monte carlo integration,
because we know the actual PDF, or

Compensate the sample generation in polar
coordinates so that they will be uniform AFTER the
transformation

60

Knowing the PDF

If we know the effect of a transformation on the PDF, we can
Use it in the Monte Carlo integral to weight our samples, or
Compensate to get a uniform sampling method after transformation

Rendering – Importance Sampling 60

𝐼𝑛𝑝𝑢𝑡 (𝜉ଵ, 𝜉ଶ) 𝐶𝑎𝑟𝑡𝑒𝑠𝑖𝑎𝑛 (𝑥, 𝑦)

𝑃𝑜𝑙𝑎𝑟 (r, 𝜃)

𝑇(𝑟, 𝜃)

Equal area!

Scale +
compensate

We are going to go with the second option.

61

Computing the PDF after a Transformation

Assume a random variable and a bijective transformation
that yields another variable

Bijectivity implies that must be either monotonically
increasing or decreasing with

This implies that there is a unique ୧ for every ୧, and vice versa

In this case, the CDFs for the two variables fulfill ஻ ஺

Rendering – Importance Sampling 61

Assume we have a random variable A and a bijective
transformation T whose input is A and whose output is
B, which itself is another random variable.

If the transformation is bijective, this implies that the
output of T must be either monotonically increasing or
decreasing with a.

This in turn means that we can find a unique output
value for every input value, and vice versa.

Consequently, we find that the output of the CDF of the
transformed random variable for a transformed value
T(a) is equal to the PDF of the original variable A for
value a.

62

Computing the PDF after a Transformation

If and increases with , we have: ௗ௉ಳ(௕)

ௗ௔

ௗ௉ಲ(௔)

ௗ௔

If decreases with (e.g., , we have: ௗ௉ಳ(௕)

ௗ௔

ௗ௉ಲ(௔)

ௗ௔

Since ஻ is the non-negative derivative of ஻, we can rewrite as:

஻ ஺

஻

ିଵ

஺

Rendering – Importance Sampling 62

𝑈𝑠𝑖𝑛𝑔:
𝑑𝑃௑ 𝑥

𝑑𝑦
=

𝑝௑ 𝑥 𝑑𝑥

𝑑𝑦

So that leaves two possibilities for the variable b. It can
either increase with a, or decrease with a, for instance
if b is just negative a.

In both cases, we have an equality for the change in
the CDF of B over a change in a and the change in the
CDF of A over a, just the sign in front differs.

The term on the right is just the derivative of the CDF
for A, and we know the derivative of the CDF is the
PDF.

For the term on the left, we can use that the change in
the CDF is equal to the PDF times dx, so we get pB of
b times db over da equals pa of a.

We take the absolute value for db over da, because the
differentials could be going in different directions if for

‹Nr.›

instance b is negative a.

But since we want to find only the amount by which the PDF
changes, and PDFs must always be positive, so we take the
absolute value of db over da.

Taking the reciprocal and moving the term to the right, we get
a formula for expressing the PDF of the transformed random
variable as a change of to the A’s PDF!

63

Computing the PDF after a Transformation

Let’s interpret ஻
ௗ௕

ௗ௔

ିଵ

஺

It is the probability density of at , multiplied by ௗ௕

ௗ௔

ିଵ

ௗ௕

ௗ௔

ିଵ
has two intuitive interpretations:

the change in sample density at point if we transform by
or,
the reciprocal change in volume (space) for a volume element
(hypercube) at point if we transform by transformation

Rendering – Importance Sampling 63

Let’s try to find an intuitive interpretation for this
equality:

The PDF of b is that PDF of a times db over da
inverted. Now, based on what we have done before, we
can interpret this term in two ways.

We can either see it as the change in sampling density
at 𝑎 if we transform by 𝑇
or,
the inverse change in the volume of an infinitesimal
hypercube at location 𝑎 if we transform 𝑎 by 𝑇

Try to make some sense of the latter interpretation,
because we will return to it in a minute

64

Multidimensional Transformations

If we try to apply the above to the unit disk, we fail at

We can’t evaluate ௗ௫

ௗ௥

ିଵ
: the transformation that produces one

target variable is dependent on both input variables and vice-versa

We cannot compute the change in the PDF between individual
variables, we must take them all into account simultaneously

It’s matrix time!
Rendering – Importance Sampling 64

Ok great,so we try to apply this method to the unit disk
but we find that our tools don’t work here because the
transformation is not a function of just one variable

It’s a function of TWO variables.

So in order to quantify the change in the PDF in this
multidimensional setup, we must find a solution that
takes all involved variables into account simultaneously.

And we can do this by moving from individual values to
handling matrices of random variables.

65

Multidimensional Transformations

We write the set of values from a multidimensional variable
as a vector and the outputs of transformation as a vector :

ଵ

ே

ଵ

ே

ଵ

ே

Instead of quantifying the change in volume incurred by
ௗ் ௔

ௗ௔
, our goal is now to quantify the change incurred by

Rendering – Importance Sampling 65

We can collect all of our individual, single output
variabes into one multidimensional random variable.
The output from such a variable is a vector. We can do
this for the original variable A and the transformed
variable b.

If we do this, then we can just take equality from before
and replace the PDF of A with the joint PDF of the
multidimensional variable A arrow and the same goes
for b.

But for the actual change in the PDF, we have to look at
the term that before was the inverse of db over da, or d
T(a) over da.

We now have to make sure that this term incorporates
the full change of the joint PDF when we transform one
multi-dimensional variable to another.

66

The Jacobian Matrix

For a transformation , we can define the Jacobian matrix
that contains all ௝ ௜ combinations of partial differentials

்

డ௕భ

డ௔భ

డ௕భ

డ௔ಿ

డ௕ಾ

డ௔భ

డ௕ಾ

డ௔ಿ

If we consider ’s domain as a space with axes, ் gives the
change of the edges of a volume element from to

Rendering – Importance Sampling 66

This is where we have introduce, or recap if you
already know it, the Jacobian matrix.

If we have a transformation from vector a to vector b,
the Jacobian matrix contains all combinations of partial
differentials for the individual values in both vectors.

Therefore the Jacobian contains the values of all
possible partial derivatives that we can form with
vectors and b.

So if we take the first row and first column, the entry
indicates how the first value of vector b changes with
the first value in vector a.

In the second row, first column, we see how the second
value of vector b changes with the first value in vector
a, and so on and so forth.

Basically the Jacobian matrix in our application

‹Nr.›

encodes for a given location vector a, how each transformed
variable changes with each untransformed variable.

The first column indicates how all transformed variables
would be influenced by infinitesimal changes in the first
untransformed variable.

The second column indicates how all transformed variables
would be influenced by infinitesimal changes in the second
untransformed variable, and so on and so on.

67

The Jacobian Matrix, Visualized

Change in edges of a volume element (infinitesimal hypercube) at

𝐽்(𝑎⃗) =

𝜕𝑏ଵ

𝜕𝑎ଵ
⋯

𝜕𝑏ଵ

𝜕𝑎ே

⋮ ⋱ ⋮
𝜕𝑏ே

𝜕𝑎ଵ
⋯

𝜕𝑏ே

𝜕𝑎ே

Rendering – Importance Sampling 67

𝑏𝑎⃗
1
0

𝜕𝑏ଵ

𝜕௔ଵ

𝜕𝑏ଶ

𝜕௔ଵ

0
1

𝜕𝑏ଵ

𝜕௔ଶ

𝜕𝑏ଶ

𝜕௔ଶ

If we again take the help of our imaginary infinitesimal
hypercubes, we could say that each column of this
Jacobian matrix shows us how the edges of an axis-
aligned hypercube in our input domain change during
the transformation T.

And this is interesting because it means, for any given
position vector a, we can see the Jacobian matrix itself
as a transformation matrix that is valid only for an
infinitesimally small region at position vector a.

68

The Jacobian

The columns of a square matrix can be interpreted as the natural

base vectors of a space if they were transformed by it

The determinant of a matrix yields the volume
of a parallelepiped spanned by these vectors[3]

் , the Jacobian of , gives the change in volume at due to

Rendering – Importance Sampling 68

𝑏

𝑱𝑻 𝒂

The final piece that we need is the determinant. If we
are comfortable with seeing the Jacobian matrix as a
transformation matrix, then we can quickly quantify the
change in volume that generates. The columns of a
square transformation matrix can be seen as the basis
vectors of the transformed space. With this
interpretation, the determinant of a matrix computes the
volume of the parallelepiped that is formed by these
basis vectors.

So we are going to replace the term of change in range
from earlier with the determinant of the the Jacobian
matrix of, or the Jacobian of T, for short.

This gives us the change in volume of an infinitesimal
hypercube at a multidimensional location if we
transform it with transformation T. This is exactly what
we have been looking for.

‹Nr.›

Now if this made your head spin a little, that is totally fine.
Feel free to revisit this part of the lecture, because it is
definitely a tough concept to grasp.

You don’t need to remember these steps to apply the
techniques,

But we wanted to show you the underlying idea and some
reasoning for why it makes sense to use the reciprocal of the
Jacobian to quantify the change in the PDF, rather than just
give you the final formula.

69

Computing the PDF of a Transformation

Let’s try polar coordinates again:

డ்
௥
ఏ

డ
௥
ఏ

்

డ௫

డ௥

డ௫

డఏ
డ௬

డ௥

డ௬

డఏ

௣(௥,ఏ)

௥
, or , which tells us: the change in

probability density from to is inverse proportional to
Rendering – Importance Sampling 69

Returning to the unit disk, we try measure the change
in the PDF caused by the transformation, this time with
multidimensional random variables.

We can easily find the Jacobian matrix of T by
computing all partial derivatives, and if we take the
determinant of the resulting matrix, we get radius r

So we have equality, p(x,y) is equal p(r, theta) over r, or
p(r,theta) is equal to r times p(x, y).

What this tells us, is, a uniform density in cartesian
coordinates x,y must be proportional to r in polar
coordinates r, theta

70

Sampling Joint PDFs Correctly

For independent variables, the joint PDF is ௑ ௒

In general, this is an assumption that we should not rely on

Furthermore, after a transformation, only the joint PDF is known

The proper way to sample multiple variables is to compute
the marginal density function 𝑝௑ 𝑥 of one
the conditional density function 𝑝௒ 𝑦|𝑥 of the other

Rendering – Importance Sampling 70

The last challenge we need to face is the correct
sampling of a joint PDF. Until now, we only saw
distributions from independent variables, we knew their
individual PDFs, so we could simply invert their CDFs
und sample them separately. But this is an assumption
that we should not make in general, and there is a
proper way to do it that only requires a little extra effort.

In the case of two variables and given their joint PDF,
we can do this as follows: we first compute the
marginal density function of one of the variables, and
then the conditional density function of the other.

We will use these, marginal and conditional density
functions, instead of the PDFs for individual variables,
because that is only guaranteed to work if they are
independent.

But the steps we need to perform on them are the

‹Nr.›

same as before: integrate them, invert the indefinite integrals,
and use them for sampling.

If we do this, it basically equates to a procedure where we
first sample one of the random variables and then sample the
other, because the second variable’s sampling might depend
on what was returned by the first, hence “conditional”.

71

Marginal and Conditional Density Function

Assume we have obtained the joint PDF of variables
with ranges ௑ ௑ and ௒ ௒

In a 2D domain with we can think of ௑ as the average
density of at a given over all possible values

We can obtain the marginal density function for one of them by
integrating out all the others, e.g.: ௑

௕ೊ

௔ೊ

We can then find ௣(௫,௬)

௣೉(௫)

Rendering – Importance Sampling 71

How do we get these marginal and conditional density
functions? We will look at the case for 2 variables first.

You might have heard about marginal probability
already. If you have multiple variables that define your
outcomes, the marginal density function of a variable is
the probability density function for that one variable
alone, we don’t care about the values of the other.

So for example, if out of all possible combinations of x
and y we have 50% chance of seeing x=1, then the
marginal density for x based on p(x,y) will be 0.5 for x =
1.

You can also see a variable X’s marginal pdf as the
function tells you the average density at a given value x
over the entire range of the other variable.

‹Nr.›

There is an easy way to get a closed-form solution for the
marginal pdf of a variable, and that is by “integrating out”.

We do this by integrating the joint PDF over the full range of
the other variable.

The rules of probability tell us how we can get the conditional
density as well, that is, the probability of seeing a certain
value y for a given value x.

Once we have the marginal density function, computing the
conditional density function is easy, we just divide the joint
PDF by it.

72

Adding More Variables

What to do for multiple variables, e.g. and ?

Find first marginal density 𝑝௑ 𝑥 = ∫ ∫ 𝑝 𝑥, 𝑦, 𝑧 𝑑𝑦 𝑑𝑧 ௕௒

௔௒

௕௓

௔௓

Find first conditional density 𝑝௑ 𝑦, 𝑧|𝑥 =
௣ ௫,௬,௭

௣೉ ௫

Find second marginal density 𝑝௒ 𝑦|𝑥 = ∫ 𝑝 𝑥, 𝑦, 𝑧 𝑑𝑧
௕௓

௔௓

Find second conditional density 𝑝௑ 𝑧|𝑥, 𝑦 =
௣ ௬,௭|௫

௣ೊ ௬|௫

Integrate + invert first marginal, first and second conditional densities
Sample each of them
Extend ad libitum to even more variables

Rendering – Importance Sampling 72

For the sake of completeness, we also include for you
here the procedure to extend this to more variables.
We won’t be using this anytime soon, but in case you
were wondering how this can be scaled, you can simply
follow this method here.

73

Sampling the Unit Disk: The Formal Solution

We know the proportionality constant is (area of sampled disk)

Since we want uniform sampling and sample probabilities should
integrate to 1, the target PDF in cartesian coordinates is ଵ

గ

் told us that , so we want ௥

గ

ோ
ଶగ

଴
and ௣(௥,ఏ)

௣ೃ(௥)

ଵ

ଶగ

Rendering – Importance Sampling 73

Ok finally! Let’s apply all that we have learned and find
a formal solution for uniformly sampling the disk. Now
that we know all the steps, this will be really quick.

We know that the sampling domain has a total area of
pi, and we know that the PDF must integrate to one
over the sampling domain, so we know that the density
for any 2D point should be 1 over pi.

We also know from before that, if we want a certain
PDF in cartesian coordinates, we must multiply by the r
to get the corresponding PDF in polar coordinates, so
we should the PDF r over pi in polar coordinates for a
uniform PDF in cartesian coordinates.

Finally, we compute the marginal density function for r

‹Nr.›

by integrating the joint density function over the full range of
theta, and then the conditional density for theta given r.

And from that, we already know what to do: integrate the
PDFs to get CDFs, invert them, and sample them to samples
for our custom distributions. Let’s quickly check if it worked.

74

Sampling the Unit Disk: The Formal Solution

If we create samples in polar coordinates for these PDFs, we will get
the uniform distribution in after applying transformation

Rendering – Importance Sampling 74

𝑟

𝜃

And yes, in fact we can confirm that this sampling
method in polar coordinates gives us a uniform
distribution in cartesian coordinates!

75

Sampling the Unit Disk: The Formal Solution

Integrate marginal and conditional PDFs and
invert—we get the same solution as before:

𝑟 = Pோ
ିଵ 𝜉ଵ = 𝜉ଵ

𝜃 = 𝑃஀
ିଵ 𝜉ଶ = 2𝜋𝜉ଶ

is constant: no matter what radius we are looking at, all
positions on a ring of that radius (angle) should be equally likely

Final integral: ௧௢௧௔௟
గ

ே ௜ ௜ ௜ ௜
ே
௜ୀଵ

Rendering – Importance Sampling 75

So it is no surprise, the solution is exactly the same as
before, so we can confirm that it is correct.

Something that we can confirm now: even though we
computed the conditional density of theta, it didn’t
actually change much. We are still sampling uniformly
from 0 to 2pi, as we did when we first tried sampling the
disk. But in more complex setups, this may not be the
case, so it’s best to stick with the procedure and
compute the conditional density whenever you try to
enforce a particular sampling after a transformation.

The final integral over the disk is just a formality,
because the samples are uniformly distributed over the
area and we are integrating over the area, we can use
the simpler Monte Carlo integration, which is a simple
average of the sampled RGB colors, times PI.

76

Today’s Roadmap

Rendering – Importance Sampling 76

What exactly are CDFs and PDFs?
What is the inversion method?

How to sample arbitrary functions?
What’s the fastest way to cosine-
weighted hemisphere sampling?

The Inversion
Method

Sampling the
Unit Disk

Required
Background
(CDF, PDF)

Importance Sampling
for the Diffuse BRDF

Sampling the
Hemisphere

Importance
Sampling Unlocked!

Sampling the Unit Disk 2:
Crossing Domains

Ok, that was quite a ride. But the good thing is, this was
the final mathematical tool that we needed to learn
about. From here on out, it’s basically just repeating
and applying things we already know when we get to
our next important stop, sampling the hemisphere.

77

Moving on to the Hemisphere

This took as a while, but we have seen all the formal procedures

We only need to switch from integrating planar area to points
on hemisphere surface (i.e., vectors with length)

Use spherical coordinates and bijective from to

Rendering – Importance Sampling 77

Now that we have mastered the unit disk, let’s move on
to the unit hemisphere. This is what we wanted all
along, a way to integrate functions over the hemisphere
surrounding a point in the scene to find out the total
amount of incoming light.

So instead of integrating over a planar area, we will
now be integrating over the surface area of the unit
hemisphere, or direction omega in 3d of length 1.

But sampling in 3D with the restriction that vectors all
must be of length 1 would be kind of awkward.

We would have to throw away all the samples that don’t
land exactly on the surface of the sphere.

So instead, we are gonna use a space where the
surface of the sphere is an easy shape to get, and for
that we use spherical coordinates, which are defined by
a radius r and two angles theta and phi.

‹Nr.›

Like with the unit disk, we have a transformation from one
sample space to the other.

The bijective transformation from r, theta and phi to x,y, and z
is something that we can easily find in a textbook, so we will
use it to transform spherical samples into vectors.

Again, we will look for a way to find a sampling strategy with
geometric reasoning before looking at the formal method.

78

Deriving Integration Over Hemisphere

Each direction represents an infinitesimal surface area portion
How do we integrate a function with differential ?
Integration over points on hemisphere surface , w.r.t.

Rendering – Importance Sampling 78

𝜃

𝜙

𝜔
𝑑𝜔

𝑛

We can define an infinitesimally small piece of surface
area on the unit hemisphere for each direction vector
omega.

Each direction can be uniquely identified by spherical
coordinates r, theta and phi. On the unit hemisphere, r
= always 1, so we can ignore it for now

So let’s assume we want a solution for the integral over
the surface of the hemisphere, how can we write this as
an integral over theta and phi?

Again, if you want to, take 5 minutes and try to come up
with a solution if you care to. Remember that instead of
a planar surface, we are now integrating over the
curved surface of the hemisphere.

79

Deriving Integration Over Hemisphere

We assume a planar surface with an upright facing normal

We use the integral intervals గ

ଶ

I.e., a curve from perpendicular to parallel for , a ring for

Rendering – Importance Sampling 79

2𝜋

𝜋

2

𝑛

First let’s define our setup. We have a planar surface
that the point in the scene and the hemisphere rests
on.

The surface has a normal, and the hemisphere is
oriented around it. So the range of theta, from normal
to parallel, covers exactly pi over 2 radians

Since phi covers a full circle, its range is from 0 to 2pi.

80

Deriving Integration Over Hemisphere

We can split the surface along into ribbons of width
The upper edge of the ribbon is slightly shorter than the lower
If we keep adding more and more ribbons, this difference vanishes

Rendering – Importance Sampling 80

Δ𝜃

Again, we will try to disassemble the curved surface of
the hemisphere into smaller parts that we can easily
analyze, and then put them back together again.

Let’s assume we split the surface of the hemisphere
along theta into ribbons of width delta theta.

We keep splitting the ribbons, and therefore delta theta
gets smaller and smaller.

In the beginning,, the upper edge of each ribbon will be
slightly shorter than the lower one, but the more we
split, the smaller this difference becomes.

If we split the ribbons infinitely often and delta theta
goes towards an infinitesimally small number, this
difference goes away completely

81

Deriving Integration Over Hemisphere

As a ribbon’s width goes to , its area becomes its length times
We can find this length by projecting the ribbon to the ground
Using trigonometry, we find the length of a ribbon is

Rendering – Importance Sampling 81

So after infinitely many splits, the area of each ribbon is
equal to its length around the surface, times an
infinitesimal delta theta.

We can find the length of each ribbon by projecting it
down to the ground.

82

Deriving Integration Over Hemisphere

As a ribbon’s width goes to , its area becomes its length times
We can find this length by projecting the ribbon to the ground
Using basic trigonometry, we find the length of a ribbon is

Rendering – Importance Sampling 82

sin 𝜃
𝜃

𝑛

cos 𝜃

Using some basic trigonometry rules, we ca then find
the length of the ribbon as the circumference of a circle
with radius of sine theta.

83

The length of a ribbon spans the entire interval

Convert the length to an integral over ଶగ

଴

The final integral:

ஐ

ଶగ

଴

ഏ

మ
଴

Deriving Integration Over Hemisphere

Rendering – Importance Sampling 83

𝜃

𝜙

𝜔
Δ𝜔

𝑛

The length of the ribbon covers the entire domain of
phi, all the way around the hemisphere’s normal.

Also we don’t have a reason to expect that the surface
area of the hemisphere changes between different
angles of phi, so we can assume that the integral over
phi is uniform.

So if we want to write the found length of the ribbon as
the integral over phi, we can simple make it range from
0 to 2pi.

That cancels out the 2pi in the length of the ribbon
length, so all that we are left with is sin phi.

And with that, we already have the final integral over
the hemisphere w.r.t. theta and phi.

84

Deriving PDF for Hemisphere Sampling

Integral of over area

୼ఠ

Integral of w.r.t.

୼థ

୼ఏ

Integration domain and are identical, thus:

is bijective, we have and:

Rendering – Importance Sampling 84

Δ𝜔
Δ𝜃

Now we have derived the integral over the hemisphere
for theta and phi, but actually it is also valid for any
arbitrary small region on the surface of the hemisphere.

Let’s look at an area on hemisphere surface, delta
omega that we want to integrate over. We compare an
integral over directions with the integral w.r.t. theta and
phi that we just derived.

Since we can always transform theta and phi into an
omega, it is ok to integrate a function depending on
omega in both versions. Now if we compare the two,
we see that integration domain and f of omega are the
same. The result of both integrals must also be the
same, so that leaves us with the conclusion that d
omega is equal to sine of theta d phi d theta

‹Nr.›

We already know that if the transformation of a variable is
bijective, the result of that transformation is again a variable
and their CDFs must be equal. That means that their PDFs
multiplied by their differentials must also be equal. So we can
combine the equalities on this slide to get the relative
difference between PDFs in spherical coordinates and over
directions omega.

Concretely, we find that if we want a particular PDF for our
directions on the unit hemisphere, we must multiply by sine of
theta to get the corresponding PDF for sampling in spherical
coordinates.

You can see that this is not as intuitive as perhaps our
solution for the unit disk was. So it might have taken you
quite a while to arrive at this on your own.

Luckily, we have our formal way of doing it, and this is now
much shorter.

85

Deriving PDF for Hemisphere Sampling, the Formal Way

Target distribution in , which is with ଶ ଶ ଶ

The transformation from to

The Jacobian of the transformation gives ்
ଶ

, so we have

Rendering – Importance Sampling 85

We use the transformation from spherical coordinates
to points on the unit hemisphere. We have

X = r times sine of theta sine of phi

Y = r times sine of theta cosine of phi

Z = r times cosine of theta

If we compute the Jacobian of this transformation, we
get the factor r^2 times sine of theta

So we know that if we want a particular PDF for the
distribution of points on the hemisphere, we must
multiply this distribution by r squared times sine of theta
for sampling in spherical coordinates.

Notice that on the unit hemisphere, r is 1, so it has no
effect and we can ignore it moving forward.

And that’s it.

86

Uniformly Sampling the Unit Hemisphere

The domain, i.e., the unit hemisphere surface area, is .
Uniformly sampling the domain over implies ଵ

ଶగ

Hence, since , we want ୱ୧୬ ఏ

ଶగ

Marginal density ஀ : ଶగ

଴

Conditional density : ௣ ఏ,థ

௣౸(ఏ)

ଵ

ଶగ
Rendering – Importance Sampling 86

The rest is now strictly by the book. We first find the
volume of the domain, and we know the surface area of
a unit hemisphere is 2pi.

So that means a uniform distribution over points on the
hemisphere would need constant density 1 over 2 pi

We just saw how to convert a PDF for points on the
hemisphere into a PDF for sampling in spherical
coordinates, so we convert the PDF by multiplying with
sine of theta.

Then we find the marginal density for theta by
integrating out phi.

And we find the conditional density of phi given theta.

87

Uniformly Sampling the Unit Hemisphere – Complete

Antiderivative of ஀ : (added constant)

Antiderivative of : ଵ

ଶగ

థ

ଶగ

Invert them to get ିଵ
ଵ (is symmetric), ଶ

Apply transformation on to obtain uniformly distributed

Finally done!
Rendering – Importance Sampling 87

With these two solutions for marginal and conditional
density, we find their antiderivatives. To get a valid CDF
for theta, we use a little trick, we add 1. Remember that
this is allowed for antiderivatives.

We can then invert these CDFs and get a sampling
strategy for uniformly sampling the surface of the
hemisphere with canonical random variables as inputs.

And because we will be using cartesian coordinates for
our rendering routine, so basically XYZ directions for
light and view rays, we transform them from spherical
coordinates to points on the unit hemisphere in XY and
Z.

88

Today’s Roadmap

Rendering – Importance Sampling 88

What exactly are CDFs and PDFs?
What is the inversion method?

How to sample arbitrary functions?
What’s the fastest way to cosine-
weighted hemisphere sampling?

The Inversion
Method

Sampling the
Unit Disk

Required
Background
(CDF, PDF)

Importance Sampling
for the Diffuse BRDF

Sampling the
Hemisphere

Importance
Sampling Unlocked!

Sampling the Unit Disk 2:
Crossing Domains

Hopefully you saw, how much quicker the formal way
for finding a uniform sampling strategy on the
hemisphere was, compared to deriving it by hand and
with intuition. This is what today’s agenda was all
about, getting comfortable with a method that allows
you to generate samples with custom distributions in a
non-trivial domain. And in the future, if you ever go
beyond the hemisphere, you will be able to apply this
technique by following the steps, without having to
derive it for every individual case. But for now, let’s use
them what we came here for: importance sampling for
path tracing.

89

Importance Sampling the Diffuse BRDF

Let‘s look once more at the reflected light in the rendering equation

When we bounce at a point , we already know quite a bit:
If we use a diffuse BRDF, then 𝑓 𝑥, 𝜔 → 𝑣 is a constant factor ఘ

గ

We can predict the cosine term—it depends on our choice of 𝜔

The tricky part, the big unknown, is the 𝐿 𝑥 ← 𝜔

Which directions will indirect light come from?

Rendering – Importance Sampling 89

௥ ఠ
ஐ

𝑓(𝑥)

Like we did so many times already, let‘s look at the
reflection part of the rendering equation.

Once again, we will restrict ourselves to diffuse
materials for now.

That way, when we are at a hit point and generate a
sample for integrating the function for reflected light f(x)
from all directions of the hemisphere, we know exactly
what terms we are dealing with. We have th BRDF,
which is a simple constant factor for the diffuse
materials we looked at so far.

We have the cosine which is easy enough to predict,
because it depends on our omega, but the tricky part is
the incoming light itself, because as we know, that is an
infinitely recursive function. And that is what makes it
so difficult, because this infinite recursive function is
dependent on every single shape and every single
material in our scene, and how they all are arranged

‹Nr.›

relative to each other… clearly we can‘t make an exact guess
what f(x) looks like.

90

If we don‘t know anything about , let‘s just assume a constant

ఘ

గ
and are constant, so clearly, ఘ

గ ఠ ఠ

With these assumptions, the
integrand function is governed
entirely by the term !

Importance Sampling the Diffuse BRDF

Rendering – Importance Sampling 90

ఠ
ஐ

𝜃

But if we have no idea what it looks like, that tells us
something. It tells us that, without additional
information, light has an equal chance to come from all
directions! So let‘s just assume a constant factor k that
represents uniform incoming light from all directions.
With that setting, where we assume constant incoming
light and a diffuse BRDF, the shape of the resulting
integrand is only dependent on the cosine of theta!

91

Importance Sampling the Diffuse BRDF

We know that the ideal distribution for importance sampling a
function is the one that minimizes variance, i.e., itself

With the assumption of constant light from all directions, our
integrand was simplified to something proportional to

Idea: Importance-sample hemispheres
around hit points with diffuse materials
with distribution ఠ

Rendering – Importance Sampling 91

𝑛 𝑛

Uniform
hemisphere sampling

Cosine-weighted
hemisphere sampling

This brings us actually to the primary method of
importance sampling the hemisphere for diffuse
materials. For importance sampling, we want our
distribution to mimic the shape of the actual function we
are integrating, and if that shape is only influenced by
the cosine, then what we need is a sampling
distribution that follows the cosine of theta over the
hemisphere. The cosine is, of course, highest when the
input is zero, which in our case means, more samples
would be distributed close to the apex of the
hemisphere, or in other words, they would focus around
the surface normal. On the bottom right, we see two
different sample distributions on the hemisphere, one
with uniform distribution, the other with cosine. Note
how with cosine-weighted sampling, they are much
denser around normal, and how they fade out towards
the edge of the hemisphere!

92

Cosine-Weighted Hemisphere Sampling?

In the first half, we saw how you can apply the inversion method for
sampling arbitrary distributions

In the second half, we were all about making sure that we can reach
our target distribution when we move from one domain to another

Cosine-weighted hemisphere sampling is a combination of the two

We have gone through all the necessary steps.
Try to solve this formally with the inversion method as an exercise!

Rendering – Importance Sampling 92

In the first half of the lecture, we learned about the
inversion method to make non-uniform distributions in
simple domains. In the second half, we learned about
how we can achieve a desired distribution in a non-
trivial target domain. Now it’s time to combine the two.

We will actually not derive the exact steps. We think
that if you paid close attention and were eager to learn
something new, you should have everything you need
to do this yourself, although you may want to go back
and look at all the previous steps a little longer before
trying this in practice. But all that is required here is,
create a PDF candidate that is based on the cosine of
omega, and then make sure that you can achieve this
distribution on the surface of the hemisphere when you
actually draw your random inputs in spherical
coordinates.

‹Nr.›

Now we actually promised you a shortcut to importance
sampling for diffuse materials, and we haven’t forgotten
about it. We believe that doing this yourself might give you a
significant heureka moment and help you understand one of
the more challenging aspects of rendering and sampling.

93

Cosine-Weighted Hemisphere Sampling!

Malley’s method: uniformly pick samples on the unit disk

Project them to the hemisphere surface ଶ ଶ

ୡ୭ୱ

గ

Done! Your samples are now
distributed with !
(Why? And why does this work? Try to find your own proof!)

Rendering – Importance Sampling 93

But if you don’t want to spend energy on that, there is a
quick solution, called Malley’s method.

Malley’s method gives us exactly what we want: cosine-
weighted samples on the unit hemisphere, and it’s
extremely easy.

All we have to do is draw uniform samples on the unit
disk (we know how to do that already) and then project
them to the surface of the hemisphere.

Done! The resulting sample distribution over the
surface will be weighted with the cosine of theta.

Why does this work? Again, we encourage you to
invest some time in solving this yourself as an exercise.

94

Importance Sampling the Diffuse BRDF

Rendering – Importance Sampling 94

AO, 64 samples, uniform hemisphere sampling AO, 64 samples, diffuse BRDF importance sampling

And the results do pay off. Here we see two renderings
of the Ajax bust, rendered with the same number of
samples. However, the one on the left used uniform
hemisphere sampling, the one on the right used
importance sampling. Clearly, we have cleaned up a lot
of noise by changing only a few lines of code.

95

More Importance Sampling

The impact will be much greater when we add non-diffuse materials

BRDF functions can
be rather complex…

…but can often be
nicely approximated

You will want to sample with distributions more complex than

Rendering – Importance Sampling 95

And later on, we will see that the effect is not only much
more pronounced in other materials, it is actually
REQUIRED for some of them to function properly.

For some of the more complex materials, the
importance sampling strategy will not be as
straightforward as the one for diffuse materials, and
sometimes we won‘t be able to make exact distributions
for given BRDFs at all. But in most cases, you will still
be able to find good approximations, and if you do that,
you will be glad that you have the inversion method at
your disposal that we discussed today.

96

More Importance Sampling

Consider the modified Beckmann distribution for microfacet BRDFs

௘
ష ౪౗౤మ ഇ

ഀమ

గఈమ ୡ୭ୱయ ఏ

Yes, seriously!

Good luck with intuitive reasoning! Challenging, but doable task
with basic trigonometric identities and the inversion method!

Rendering – Importance Sampling 96

Take for instance the modified Beckmann distribution,
which is commonly used for simulating specular
reflection in microfacet models, which we will discuss
later in the lecture.

Here, we have given you the distribution function
parameterized by theta and phi. Yes, that’s the real
formula to compute the probability density of a single
sample, and you can imagine that making samples with
this distribution is not something that you can easily
come up with by using your intuition alone. However, it
is very possible to use the inversion method and a few
helpful trigonometric identities to come up with the
sample generation method yourself with a pen and a
piece of paper. For those who are looking for a
challenge, this is the task for you.

97

Importance Sampling the Full Rendering Equation

As you can imagine, this is a much more complex task

In fact, an enormous amount of research in rendering is actively
pursuing better and better ways to make this happen

Other sophisticated methods, like multiple importance sampling
(MIS), can be of great help here!

We will hear more about MIS in upcoming lectures…

Rendering – Importance Sampling 97

So how far can importance sampling go? And will we
someday learn about a method to actually importance
sample the FULL rendering equation?

This is actually an incredibly important topic because,
as you can imagine, the better your sampling strategy
is, the more viable path tracing becomes, the faster we
get nice-looking images with a low number of samples.
So accurately importance sampling the renderin
equation is kindof the holy grail of path tracing, and an
enormous amount of research is invested in this. There
are many methods use heuristics and statistics that can
get us a lot closer to an optimal sampling behavior, like
multiple importance sampling, but there is still a lot of
room for improvement. Next time, we will actually hear
about multiple importance sampling and see how it will
clean up our renderings even more.

98

Importance Sampling Summary

If we do Monte Carlo integration of , it’s best to use a sample
distribution that closely mimics

For a desired , we can use the inversion method to get
the methods for generating samples and probability densities

If you cannot turn into a valid PDF, try to find a close match

When we transform samples between domains, we have to make
sure they have the desired distribution in the target domain!

Rendering – Importance Sampling 98

So to summarize, beyond the mathematical knowledge,
here is what you should take with you after today‘s
lecture on importance sampling:

Whenever we do Monte Carlo integration, ist best to
find distributions for generating samples that
correspond exactly to the target function f(x).

If we have an f(x) that we want our PDF to mimic, we
can use the inversion method to come up with methods
for generating samples and probability densities with
the corresponding distribution, that can often be easily
put into code right away.

However, if we have an idea about a good distribution
shape but cannot turn it into a PDF, a good idea is to

‹Nr.›

find as close an approximation as possible, and often this is
the only way because usually might not even know the exact
target function.

Finally, if we have to integrate over non-trivial domains, we
can use bijective transformations and draw our samples in
one domain and transform them to another. But when we do
that, we have to account for the fact that transformations can
shift the distributions of our samples and account for that
when we generate the samples.

99

Today’s Roadmap

Rendering – Importance Sampling 99

What exactly are CDFs and PDFs?
What is the inversion method?

How to sample arbitrary functions?
What’s the fastest way to cosine-
weighted hemisphere sampling?

The Inversion
Method

Sampling the
Unit Disk

Required
Background
(CDF, PDF)

Importance Sampling
for the Diffuse BRDF

Sampling the
Hemisphere

Importance
Sampling Unlocked!

Sampling the Unit Disk 2:
Crossing Domains

If you came this far without giving up, you have
successfully unlocked importance sampling, and we
recommend that you try apply your new-learned skills
to figure out cosine-weighted hemisphere sampling and
perhaps even implement it in your path tracer from
before. But if it all seems a bit overwhelming right now,
we encourage you to revisit the earlier sections or
check out the links on the next slide to get a little extra
input.

100

References and Further Reading
Slide set based mostly on chapter 13 of Physically Based Rendering: From Theory to Implementation

[1] Steven Strogatz, Infinite Powers: How Calculus Reveals the Secrets of the Universe

[2] Video, Why “probability of 0” does not mean “impossible” | Probabilities of probabilities, part 2:
https://www.youtube.com/watch?v=ZA4JkHKZM50

[3] Video, The determinant | Essence of linear algebra, chapter 6:
https://www.youtube.com/watch?v=Ip3X9LOh2dk

[4] SIGGRAPH 2012 Course: Advanced (Quasi-) Monte Carlo Methods for Image Synthesis,
https://sites.google.com/site/qmcrendering/

[5] Wikipedia, Volume Element, https://en.wikipedia.org/wiki/Volume_element

Rendering – Importance Sampling 100

As always, here are a few helpful references that might
give you some extra information, especially if you lost
track during the math-heavy part, these might help you
out there so that you feel more comfortable with the
steps we discussed.

We hope you had a good time and picked up
something useful from today’s lecture.

We will end it here, thank you sticking around until the
end and we hope to also see you next time.

