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Reading
• Chapter 11, 15 of “Physically Based 

Rendering” by Pharr&Humphreys
• Chapter 19, 20  in “Principles of Digital 

Image Synthesis,” by A. Glassner
• “Radiative Transfer,” by S. 

Chandrasekhar (1960)
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Participating Media
• Natural phenomena

– Fog, smoke, fire, water, …
– Atmospheric haze
– beams of light through clouds
– subsurface scattering

• Can’t really be described through ‘surface’
models

• Volumetric effects, rendering and modeling
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observer

light

Emission(+)
Scattering(+)
Absorption(-)

Transport of Light

Participating Media
• radiative transport theory
• light: particles of energy or photons moving in 

straight lines in a vacuum
• no interaction among particles 
• infinite number of particles

moving at same speed
• interact with surfaces in a

closed environment
• energy is conserved
• a steady state of energy

transfer between all surfaces
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Steady State
• Accumulation =

flow through boundaries
- flow out of boundaries
+ generation within system
- absorption within system
Streaming Absorbance Outscattering Emission Inscattering+ + = +
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Absorption
• The reduction of radiance due to conversion 

of light to another form of energy (e.g. heat)
• sa: absorption cross section - probability 

density that light is absorbed per unit 
distance traveled

€ 

Lo p,ω( ) − Li p,−ω( ) = dLo p,ω( ) = −σ aLi p,−ω( )dt

€ 

Li p,−ω( )

€ 

Lo p,ω( )
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Absorption



© Machiraju/Möller

Emission
• Energy that is added to the environment 

from luminous particles
• Lve: emitted light - not depending on 

incoming light!

€ 

dLo p,ω( ) = Lve p,−ω( )dt

€ 

Lve p,−ω( )

€ 

Lo p,ω( )
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Emission
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Out-scattering + extinction
• Light heading in one direction is scattered 

to other directions due to collisions with 
particles

• ss: scattering coefficient - probability of an 
out-scattering event to happen per unit 
distance

€ 

Li p,−ω( )

€ 

Lo p,ω( )€ 

dLo p,ω( ) = −σ s p,ω( )Li p,−ω( )dt
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Out-scattering + extinction
• Combining absorption and out-scattering:

• It’s solution:
– Tr - beam transmittance
– d - distance between p and p’
– w - unit direction vector

€ 

Lo p,ω( )

€ 

dLo p,ω( )
dt

= −σ t p,ω( )Li p,−ω( )

€ 

σ t p,ω( ) =σ s p,ω( ) +σ a p,ω( )

€ 

Tr p→ # p ( ) = e− σ t p + tω ,ω( )dt
0

d
∫

p p’t
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Out-scattering + extinction
• Properties of Tr:

– In vaccum
– Multiplicative
– Beer’s law (in homogeneous medium)

• Optical thickness between two points:

• Often used:

€ 

Lo p,ω( )
€ 

Tr p→ # p ( ) = e−σ t d

p p”p’€ 

τ p→ $ p ( ) = σ t p + tω,ω( )dt0
d∫

€ 

Tr p→ # # p ( ) = Tr p→ # p ( ) ⋅Tr # p → # # p ( )

€ 

Tr p→ # p ( ) =1

€ 

Tr p→ # p ( ) ≈1− τ p→ # p ( )



© Machiraju/Möller

In-scattering
• Increased radiance due to scattering from 

other directions
– Ignore inter-particle reactions
– S - source term: total added radiance per unit 

distance

€ 

Li p,−ω( )

€ 

Lo p,ω( )€ 

dLo p,ω( ) = S p,ω( )dt
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In-scattering

• S determined by
– Volume emission
– p - phase function: describes angular 

distribution of scattered radiation (volume 
analog of BSDF)

• p normalized to one:

€ 

Li p,−ω( )

€ 

Lo p,ω( )

€ 

S p,ω( ) = Lve p,ω( ) +σ s p,ω( ) p p,− % ω →ω( )Li p, % ω ( )d % ω 
S 2∫

€ 

p ω → $ ω ( )d $ ω 
S 2∫ =1
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In-scattering



© Machiraju/Möller

Phase Functions
• Isotropic media - phase function only 

depends on angle q between the two 
directions w and w’

• Energy preserving
• Reciprocal (simple for isotropic media)

• Isotropic phase function - equal scattering 
in all directions; independent on any angle:

€ 

p ω → $ ω ( )d $ ω 
S 2∫ =1

€ 

p ω → $ ω ( ) = p cosθ( )

€ 

cos −θ( ) = cosθ

€ 

pisotropic ω → $ ω ( ) =
1
4π
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a = 180

Top View EyeView

a0 180

ϕ(a)

Phase Function
• “how” we see the

particles
• depends on the angle of

eye E and light vector L
• Smooth drop off …
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• Many different models possible
• (isotropic) Constant function

– size of particles much less
then wavelength of the light

• (Anisotropic) basic
– more light forward then backward

- essentially our diffuse shading
• Lambert surfaces

– spheres reflect according to Lamberts law
– physically based

€ 

p cosθ( ) =
1
4π

€ 

p cosθ( ) =1+ x cosθ

€ 

p cosθ( ) = 8π 3 sinθ + π −θ( )cosθ( )

Phase Function
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• Rayleigh Scattering
– diffraction effects dominate
– Particles have radii smaller

than the wavelength l (r/ l < 0.05)
– Causes sky to be blue and sunset to be red

• Mie scattering
– Based on Maxwells equations

• Empirical Measurments
– tabulated phase function

• sums of functions
– weighted sum of functions -

model different effects in parallel

€ 

p cosθ( ) = 34 1+ cos2θ( )

Phase Function

€ 

p ω → $ ω ( ) = wipi ω → $ ω ( )
i=1

n

∑
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• Henyey-Greenstein
– general model with good fit to empirical data
– g in range [-1,+1]
– Negative g - back scattering

– g chosen such that:

– Isotropic - g=0€ 

p cosθ( ) =
1
4π

1− g2( ) 1+ g2 − 2gcosθ( )
3
2

Phase Function

€ 

g =
1
4π

p ω → % ω ( ) ω ⋅ % ω ( )d % ω 
S 2∫ = 2π p cosθ( )cosθdθ

0

π

∫
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• Henyey-Greenstein
– Ellipse-like shape dependent on g

Phase Function
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• Approx. to Henyey-Greenstein

• k similar role like g
– -1 - back scattering
– 0 - isotropic
– Could use:

€ 

pSchlick cosθ( ) =
1
4π

1− k 2( ) 1− k cosθ( )2

Phase Function

€ 

k =1.55g − 0.55g2
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Importance Sampling of HG
• Can importance sample –

new direction (at least q) is:

• Do same for  f

€ 

g ≠ 0 cosθ = −
1
2g

1+ g2 − 1− g2

1− g + 2gξ
& 

' 
( 

) 

* 
+ 

2& 

' 
( 
( 

) 

* 
+ 
+ 

g = 0 θ =1− 2ξ

€ 

p φ( ) =
1
2π
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Results - Skin
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Results - Skin
• Henyey-Greenstein phase function (g=-.25)
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Results - Skin
• Large forward scattering
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albedo
• albedo - proportion of light reflected from a 

particle: in the range of 0..1
• ss /(ss+sa) - fraction of scattered radiation
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Homogeneous Volumes
• Determined by (constant)

– ss and sa
– phase functions g value
– Emission Lve
– Plus spatial extend
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Homogeneous Volumes
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3D lattices
• Standard form of given data
• Tri-linear interpolation of data in order to 

get continuous volume is typically done
• Field of volume rendering / volume 

graphics
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Exponential density
• Given by:

• Where h is the height in the direction of the 
up-vector

€ 

d h( ) = ae−bh
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Exponential density
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Volume Aggregates
• Dealing with multiple volumes at once
• Typically just cycle through the volumes, 

one at a time and add up their contribution
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Light Transport In Total
• Summary:

– Emission + in-scatter (source term)

– Absorption + out-scatter

• Combined:€ 

S p,ω( ) = Lve p,ω( ) +σ s p,ω( ) p p,− % ω →ω( )Li p, % ω ( )d % ω 
S 2∫

€ 

dLo p,ω( )
dt

= −σ t p,ω( )Li p,−ω( )

€ 

dLo p,ω( )
dt

= −σ t p,ω( )Li p,−ω( ) + S p,ω( )
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Light Transport In Total
• In order to solve this PDE we need to 

know the boundary conditions:
a) No surfaces (boundary is inf.)
b) Surface at p0 (distance d away)

p
p0

p’
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a) No boundaries
• Solution of

• Is:
• where€ 

dLo p,ω( )
dt

= −σ t p,ω( )Li p,−ω( ) + S p,ω( )

€ 

Li p,ω( ) = Tr # p → p( )S # p ,−ω( )dt
0

∞

∫

€ 

" p = p + tω

p
p0

p’€ 

Tr " p → p( ) = e− σ t p + tω ,ω( )dt
0

d
∫
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a) No boundaries
• Essentially, this can be written as:

• Not possible to distribute samples according 
to           for general g(t)

• Typically we know solutions (either 
analytical or suitable distributions) for 
simple versions of the integral

Li p,ω( ) = e−g t( )dt f t( )dt
0

∞

∫

p
p0

p’€ 

e−g t( )t
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a) No boundaries
• If g(t)=const:

• If g(t) approx. const:

• Interval is usually not infinite;
then we can also approx. using
piecewise linear functions p

p0
p’

€ 

MC =
1
N

e−cTi f Ti( )
ce−cTii

N

∑ =
1
Nc

f Ti( )
i

N

∑

€ 

MC =
1
N

e−g Ti( )Ti f Ti( )
ce−cTii

N

∑
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a) No boundaries
• g(t) is actually the optical thickness:

• Using MC to solve:
• Natural choice would be stratified sampling
• Since 1D integral MC not very efficient
• Instead use Riemann sums:

p
p0

p’

€ 

MC =
1
N

σ t p + Tiω,−ω( )
p Ti( )i

N

∑

€ 

τ p→ $ p ( ) = σ t p + tω,ω( )dt0
d∫

€ 

Ti =
ξ + i
N

d
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From the participating mediaFrom the surface point p0

b) Surface at point p0

• To compare - the “no surface” solution:

• With surface:

• Rather complicated to solve!
€ 

Li p,ω( ) = Tr # p → p( )S # p ,−ω( )dt
0

∞

∫

p
p0

p’
€ 

Li p,ω( ) = Tr p0 → p( )Lo po,−ω( ) + Tr % p → p( )S % p ,−ω( )dt
0

d

∫
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• Find solutions for simplifications
– 1. Emission only, i.e.
– Hence:

– And: € 

S " p ,−ω( ) = Lev " p ,−ω( )

p
p0

p’
€ 

Li p,ω( ) = Tr p0 → p( )Lo po,−ω( ) + Tr % p → p( )Lev % p ,−ω( )dt
0

d

∫

€ 

MC =
1
N

Tr pi → p( )Lev pi,−ω( )dt
p pi( )i

N

∑

b) Surface at point p0
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• Use multiplicativity of Tr

• Can break up integral and compute it 
incrementally => ray marching

• Tr can get small in a long ray
– “early ray termination”
– Either using Russian Roulette

or deterministically

b) Surface at point p0

€ 

Tr pi → p( ) = Tr pi → pi−1( ) ⋅Tr pi−1→ p( )

p0

p
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• 2. Single Scattering
– Consider incidence radiance due to direct 

illumination

b) Surface at point p0

€ 

Li p,ω( ) = Tr p0 → p( )Lo po,−ω( ) + Tr % p → p( )S % p ,−ω( )dt
0

d

∫

S p,ω( ) ≈ Lve p,ω( ) +σ s p,ω( ) p p,− % ω →ω( )Ld p, % ω ( )d % ω 
S 2∫

p0

p
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• 2. Single Scattering
– Ld may be blocked by participating media
– At each point of the integral - could use 

multiple importance sampling in order to get

– But just pick light source randomly -> works 
just as well for isotropic media

b) Surface at point p0

€ 

σ s p,ω( ) p p,− % ω →ω( )Ld p, % ω ( )d % ω 
S 2∫

p0

p
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Ray Marching
• Multiple scattering  - sample sphere around 

segment of interest
• S sample rays are used to estimate the in-

scattered light
• Very expensive
• Max’95 has a good solution 
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Results
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Results
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Results
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Photon Tracing
• Photons that enter are

scattered and absorbed
• Photon maps store where

events happen
• Prob. of such an event is determined by

extinction coefficient
• Avg. distance  a photon moves
• Replace st by t(0,d) for non-homogeneous media
• Hence =  importance sample according to€ 

d =
1
σ t

€ 

d = −
logξ
σ t
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€ 

Λ =
σ s

σ t

€ 

ξ ∈ 0,1[ ]→
ξ ≤ Λ Photon is scattered
ξ > Λ Photon is absorbed
' 
( 
) 

Photon Scattering
• Prob. of Scattering
• Scale power of new photon --- can reduce 

total power (i.e. lots of low-powered 
photons again)

• Instead - do Russian Roulette again
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• Out-scattered Radiance

• Stored photons = flux

• Leading to:

€ 

Lo p,ω( ) =σ s p,ω( ) p p,− % ω →ω( )Li p, % ω ( )d % ω 
S 2∫

Volume Radiance Estimate

€ 

Li p, " ω ( ) =
d2Φ(p, " ω )

σ s p, " ω ( )d " ω dV
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• Leading to:
Lo p,ω( ) =σ s p,ω( ) p p,− ʹω →ω( ) d 2Φ(p, ʹω )

σ s p, ʹω( )d ʹω dV
d ʹω

S2∫

= p p,− ʹω →ω( ) d
2Φ(p, ʹω )
dVS2∫

≈ p p,− ʹωi →ω( )ΔΦ(p,
ʹωi )

ΔVi=1

N

∑

≈ p p,− ʹωi →ω( )ΔΦ(p,
ʹωi )

4
3πr

3
i=1

N

∑

Volume Radiance Estimate
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Rendering
• Surfaces - do traditional photon mapping
• Entering participating media - divide into 

single + multiple scattering events:

– Single scattering - do ray tracing
– Multiple scattering

- use volume photon map€ 

L p,ω( ) = Ls p,ω( ) + Lm p,ω( )
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Subsurface Scattering
• Happens in all non-metallic materials
• Often approx. by a diffuse reflection
• Bad approx. for translucent material 

(marble, skin, milk)
• Light “bleeds” through thin slabs of 

material (material illuminated from behind)
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Waxy Layer
Epidermis

Palisade

Spongy

Epidermis

Example: Leaves
• Layers of typical leaf:
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Rendered Visible Femal Foot
• Solve the actual transport

equation (No Photon Mapping)
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SS & PhotonMaps
• Create Photon Map
• Photon is refracted

(on object surface)
• Progresses through material

– scattering and absorption
• Use photon map to record events
• No record of contribution from direct light 

(use standard ray-tracing for that)
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SS & PhotonMaps
• Rendering: Use ray tracing

– Ray is bent at interface
– Step size important
– Use Russian Roulette
– Indirect multiple scattering – volume radiance estimate
– Direct single scattering- ray tracing

• distance of ray to light source (through refraction boundary)
• di - Euclidean distance
• n - surface normal
• h - refraction coefficient

€ 

d = −
logξ
σ t

€ 

" d i = di
ω ⋅ n

1− 1
η2
' 

( 
) 

* 

+ 
, 1− ω ⋅ n( )2( )



© Machiraju/Möller

SS Examples - Utah Teapot
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SS Examples
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Granite + Marble Stanford Bunny
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Some animations

All images © Jensen

http://graphics.ucsd.edu/~henrik/animations/

