Participating Media

Image Synthesis
Torsten Moller
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Reading

e Chapter 11, 15 of “Physically Based

== Rendering” by Pharr&Humphreys

= o Chapter 19,20 in “Principles of Digital
¥~ Tmage Synthesis,” by A. Glassner

& ° “Radiative Transfer, by S.
Chandrasekhar (1960)
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Participating Media

e Natural phenomena
— Fog, smoke, fire, water, ...
— Atmospheric haze
— beams of light through clouds

— subsurface scattering

e Can’ treally be described through ‘surface’
models

* Volumetric effects, rendering and modeling
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Participating Media

radiative transport theory

light: particles of energy or photons moving in
straight lines in a vacuum

no interaction among particles
Transport of Light

infinite number of particles
moving at same speed

interact with surfaces in a observer
closed environment Emission(+)

energy is conserved Scattering(+)

a steady state of energy Absorption(-)

transfer between all surfaces
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Steady State

* Accumulation =
flow through boundaries
- flow out of boundaries
+ generation within system
- absorption within system

Streaming + Absorbance + Outscattering = Emission + Inscattering
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Absorption

e The reduction of radiance due to conversion
of light to another form of energy (e.g. heat)

* G, absorption cross section - probability
density that light 1s absorbed per unit
distance traveled
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Absorption




Emission

* Energy that 1s added to the environment
from luminous particles

o L .: emitted light - not depending on
incoming light!

dLO(p,a)) =L, (p,—a))dt

LIS
¥ & *
Lip-o) \J**s%° 8]  L(pw)
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Emission

e‘.-"



Out-scattering + extinction

e Light heading in one direction 1s scattered
to other directions due to collisions with
particles

* G, scattering coefficient - probability of an
out-scattering event to happen per unit
distance dL (p,w) = -o,(p,0)L,(p,~o)dt

p a) /_> ; C L0<p’w)
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Out-scattering + extinction

e Combining absorption and out-scattering:
o,(p.w)=0(pw)+o,(pw)

dLog;’w) =-0,(p.w)L(p.,~w)

e It s solution: T(p—p)=e

f o,(p+tww)dt

— T, - beam transmittance

— d - distance between p and p’

— ® - unit direction vector

L,(p.o) |\
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Out-scattering + extinction

* Properties of T,:
— In vaccum T(p—=p)=1
— Multiplicative  T.(p—p")=T.(p— ') T.(p'— p")
— Beer’ s law (in homogeneous medium)
T(p—p)=e""

e Optical thickness between two pomts
t(p—=p)=[0,(p+tww)d a/

e Often used: L,(p.w) |
I.(p—p)=~1-7(p—p)
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In-scattering

* Increased radiance due to scattering from
other directions
— Ignore inter-particle reactions

— S - source term: total added radiance per unit
distance

dLO(p,a)) (p a))d
\

L(p-w ° L,(p.w)
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In-scattering

S(p.w) =L, (p.w)+0,p, a))f ,p(p—0' = w)L,(p.w)do’

S
e S determined by
— Volume emission

— p - phase function: describes angular

distribution of scattered radiation (volume
analog of BSDF)

e p normalized to one:

L (p.-o) Q OO ) L,(p.w)
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In-scattering




Phase Functions

Isotropic media - phase function only

depends on angle 0 between the two
directions ® and @ p(® — ') = p(cos6)

Energy preserving [, p(o — ')dw’' =1

Reciprocal (simple for 1sotropic media)
cos(-0) = cosO

Isotropic phase function - equal scattering

in all directions; independent on any angle:
1

!
S = —
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Phase Function

o “hOW” We See the

Top View EyeView
particles -
* depends on the angle of - O 0
eye E and light vector L a=0 L E
* Smooth drop off ... L.
C' a=90 O jy

Ak
(a) |
Pla )

A
> 180 |
L o ©
] |
\f
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Phase Function

Many different models possible

(1sotropic) Constant function

— size of particles much less

1
p(cosB) = o

then wavelength of the light

(Anisotropic) basic

— more light forward

p(cos 9) =1+ xcos0
then backward

- essentially our diffuse shading

Lambert surfaces

p(cos0) = 8% (sinH + (7 - 0)cos 9)

— spheres reflect according to Lamberts law

— physically based

© Machiraju/Moller



Phase Function

e Rayleigh Scattering p(COS 8) = % (1 +COS” 6)
— diffraction effects dominate

— Particles have radii smaller
than the wavelength A (r/ A < 0.05)

— Causes sky to be blue and sunset to be red
e Mie scattering

— Based on Maxwells equations
e Empirical Measurments

— tabulated phase function

* sums of functions plo—w')= Ewi p(w— ')

— weighted sum of functions - i=1
model different etfects in parallel



Phase Function

* Henyey-Greenstein
— general model with good fit to empirical data
— ginrange [-1,+1]
— Negative g - back scattering

1 2
p(cosf) = E(l — gz)/(l +g° - 2gcosH) ?
— g chosen such that:
1 / / / T
8= Szp(a) — ') w')do' = ano p(cos)cosd6

— Isotropic - g=0
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Phase Function

* Henyey-Greenstein
— Ellipse-like shape dependent on g
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Phase Function

e Approx. to Henyey-Greenstein

1

Pschiick (COS 9) = E(l — k2)/(1 — kcos 9)2

e k similar role like g

— -1 - back scattering
— 0 - 1sotropic

—~ Could use: k=155¢-0.55g"
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Importance Sampling of HG

e Can importance sample —
new direction (at least 0) 1s:

1 o 1-g2 Y
g=0 cosO=-——(1+g" -
28

g=0 0=1-2&

Do same for ¢
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Results - Skin
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Results - Skin

 Henyey-Greenstein phase function (g=-.25)
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Results - Skin

e Large forward scattering
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albedo

e albedo - proportion of light reflected from a
particle: in the range of O..1

e 0,/(0,+0,) - fraction of scattered radiation
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Homogeneous Volumes

* Determined by (constant)
— o,and o,
— phase functions g value
— Emission L,

— Plus spatial extend
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Homogeneous Volumes




3D lattices

e Standard form of given data

* Tri-linear interpolation of data in order to
get continuous volume 1s typically done

* Field of volume rendering / volume
graphics
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Exponential density

e Given by: d(h) _ ae_bh

* Where h 1s the height in the direction of the
up-vector
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Exponential density




Volume Aggregates

* Dealing with multiple volumes at once

e Typically just cycle through the volumes,
one at a time and add up their contribution
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Light Transport In Total

* Summary:

— Emission + 1n-scatter (source term)
S(pw)=L,,(p,w)+ GS(p,ou)fS2 p(p~0' = o)L (p0)do’

— Absorption + out-scatter
dL, ( p,a))
dt

= -0, (p,a))Ll.(p,—a))
e Combined:

dLO(p,a))
dt

= _at(p,a))Li(p,—w) + S(p,a))
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Light Transport In Total

e In order to solve this PDE we need to
know the boundary conditions:
a) No surfaces (boundary is inf.)
b) Surface at p, (distance d away)
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a) No boundaries

e Solution of 9L,(p:»)
dt

= —at(p,a))Ll.(p,—(U) + S(p,a))

e [s: L,-(p,w)= fT,,(p'%p)S(p’,—a))dt
e where p'=p+iw

—fdat(p+ta),a))dt

T(p'—p)=e™”
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a) No boundaries

* Essentially, this can be written as:

L (p.w)= je_g(t)dtf(t)dt
e Not possible to distribute samples according
to e ¥ for general g(t)

e Typically we know solutions (either
analytical or suitable d1str1but10ns) fo
simple versions of the integral
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a) No boundaries

1 N —cT; T 1 N
e It g(t)=const: MC = NY Cefﬁi ) = Ezf (T)
< 1 aprox. conss - L5110

g(t) approx. const: =N o

e Interval is usually not infinite;
then we can also approx. usmg
piecewise linear functions
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a) No boundaries

g(t) 1s actually the optical thickness:

t(p—=p)=[0,(p+tww)d

Using MC to solve: MC-=

N

1 0o, (p+Tw,~o)
N2 )

Natural choice would be stratified sampling

Since |

D integral MC not very efficient

Instead

' use Riemann sums:

r-=*tg

N
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p) Surface at point p,

* To compare - the “no surface” solution:

Lipw)= [T,(p'~ p)S(p'-w)d

e With surface:

L(p.w)=T(py = p)L,(p,—0)

+

d
JT.(p' = p)S(p'~w)dr
Q

From the surface point p, From the participating media

e Rather complicated to solve!
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pb) Surface at point p;

* Find solutions for simplifications
— 1. Emission only, i.e. S(p'.~w)=L, (p',-)

— Hence: )
L(p.w)=T,(p, = p)L,(p,—0)+ [ T.(p' = p)L,,(p'-w)dt
— And: 0
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p) Surface at point p,

e Use multiplicativity of T,
Tr(pi — [9) = Tr(pi g pi—l) ' Tr(pi—l — P)

e Can break up integral and compute it
incrementally => ray marching

e T.can get small in a long ray

11 . . b4
— “early ray termination

— Either using Russian Roulette
or deterministically
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p) Surface at point p,

e 2.Single Scattering

— Consider incidence radiance due to direct

1llumination
d

L(p.w)=T,(p, = p)L,(p,—»)+ [ T.(p' = p)S(p,-w)dt

0

S(p,a)) =~ Lve(p,a)) + GS(p,oo)fS2 p(p,_a)’ — a))Ld (p,a)’)da)r
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pb) Surface at point p;

e 2.Single Scattering
— L4 may be blocked by participating media

— At each point of the integral - could use
multiple importance sampling 1n order to get
Gs(p,oz))fs2 p(p,—0' = w)L,(p.0')dw’
— But just pick light source randomly -> works
just as well for 1sotropic media ™ X
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Ray Marching

Multiple scattering - sample sphere around
segment of interest

S sample rays are used to estimate the in-
scattered light

Very expensive

Max’ 95 has a good solution
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Results







Results




Photon Tracing

Photons that enter are
scattered and absorbed

Photon maps store where
events happen

Prob. of such an event i1s determined by

extinction coefficient d = 1

O

t

Avg. distance a photon moves
Replace o, by t(0,d) for non-homogeneous media
Hence = importance sample according to , _ _10gS

o
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Photon Scattering

. g,

* Prob. of Scattering A=

e Scale power of new photon --- can reduce
total power (1.e. lots of low-powered

photons again)

e Instead - do Russian Roulette again

Ee [O 1] E <A Photon is scattered
’ £ > A Photon is absorbed
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Volume Radiance Estimate

e Qut-scattered Radiance
L(pw)= GS(p,ou)fS2 p(p.—0'— o)L(p,0')do’
e Stored photons = flux

d*®(p,w")
o,(p.w')dw'dV

e Leading to: /
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Volume Radiance Estimate

e Leading to:

, d°®d(p,w") ,
L (0} ), lp-o/ o) LI

d°®d(p,w")
dV
i A(I)(P,wi')

CU%C()
= AV L
N S
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Rendering

* Surfaces - do traditional photon mapping
e Entering participating media - divide into
single + multiple scattering events:
L(p,a)) = Ls(p,w) + Lm(p,a))
— Single scattering - do ray tracing

— Multiple scattering A
- use volume photon map
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Subsurface Scattering

 Happens in all non-metallic materials

e Often approx. by a diffuse reflection

e Bad approx. for translucent material
(marble, skin, milk)

e Light “bleeds” through thin slabs of
material (material 1lluminated from behind)







Example: Leaves

e Layers of typical leat:

Palisade

— Sponhgy

Epidermis
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Rendered Visible Femal Foot

* Solve the actual transport
equation (No Photon Mapping)
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SS & PhotonMaps

e Create Photon Map

e Photon 1s refracted

(on object surface)

* Progresses through material
— scattering and absorption

e Use photon map to record events

e No record of contribution from direct light
(use standard ray-tracing for that)

© Machiraju/Moller



SS & PhotonMaps

e Rendering: Use ray tracing

— Ray 1s bent at interface o

— Step size important p logé&

— Use Russian Roulette o,

— Indirect multiple scattering — volume radiance estimate

— Direct single scattering- ray tracing

 distance of ray to light source (through refraction boundary)

e d, - Euclidean distance ‘ ‘
w-n

e n - surface normal di’ = dl,
. - refraction coefficient 1 2
" 1—()(1—(00-71))
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SS Examples - Utah Teapot
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Granite + Marble Stanford Bunny
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Some animations
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http://graphics.ucsd.edu/~henrik/animations/

