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Reading

2

• Chapter 7 of “Physically Based Rendering” by 
Pharr&Humphreys

• Chapter 14.10 of “CG: Principles & Practice” 
by Foley, van Dam et al.

• Chapter 4, 5, 8, 9, 10  in “Principles of Digital 
Image Synthesis,” by A. Glassner

• Chapter 4, 5, 6 of “Digital Image Warping” by 
Wolberg

• Chapter 2, 4 of “Discrete-Time Signal 
Processing” by Oppenheim, Shafer
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Motivation 

• We live in a continuous world
• Computer can only offer finite, discrete rep.
• To discretize a continuous phenomenon

– Take a finite number of samples – sampling 
– Use these samples to reconstruct an 

approximation of the continuous phenomenon
• To get the best approximation, need to be 

intelligent with sampling and reconstruction

3
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If not careful … 

• Artifacts can be caused by both sampling 
(pre-) and reconstruction (post-aliasing):
– Jaggies
– Moire
– Flickering small objects
– Sparkling highlights
– Temporal strobing

• Preventing these artifacts - Antialiasing

4
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Signal processing and 
sampling

• Signal transform in a black-box

• Sampling or discretization:

5

“System” or 
Algorithm

Multiplication with 
“shah” function
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Reconstruction (examples)

• nearest neighbor

• linear filter:

6

Convolution with 
box filter

Convolution with 
tent filter
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Main issues/questions

• Can one ever perfectly reconstruct a 
continuous signal? – related to how many 
samples to take – the ideal case

• In practice, need for antialiasing techniques
– Take more samples – supersampling then 

resampling
– Modify signal (prefiltering) so that no need to 

take so many samples
– Vary sampling patterns – nonuniform sampling

7
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Motivation- Graphics

8

Original 
(continuous) signal

“manipulated” 
(continuous) signal

sampled 
signal

“Graphics”

sampling
Reconstruction 

filter
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Basic concept 1: Convolution

• How can we characterize our “black box”?
• We assume to have a “nice” box/algorithm:

– linear
– time-invariant

• then it can be characterized through the 
response to an “impulse”:

9

“System” or 
Algorithm
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• Impulse:

• discrete impulse:

• Finite Impulse Response (FIR) vs.
• Infinite Impulse Response (IIR)

Convolution (2)

Not a math 
function

10
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• Continuous convolution …
• Discrete: an signal x[k] can be written as:

• Let the impulse response be h[k]:

Convolution (3)

11

“System” or 
Algorithm

δ[k] h[k]
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IIR - N=inf. 
FIR - N<inf.

Convolution (4)

• for a linear time-invariant system h, h[k-n] 
would be the impulse response to a delayed 
impulse δ[k-n]

• hence, if y[k] is the response of our system 
to the input x[k] (and we assume a linear 
system):

12

“System” or 
Algorithm

x[k] y[k]
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• Let’s look at a special input sequence:

• Then applying to a linear, time-invariant h:

Basic concept 2: Fourier 
Transforms

13
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• View h as a linear operator (circulant matrix)
• Then        is an eigen-function of h and H(ω) 

its eigenvalue
• H(ω) is the Fourier-Transform of the h[n] and 

hence characterizes the underlying system in 
terms of frequencies

• H(ω) is periodic with period 2π
• H(ω) is decomposed into

– phase (angle) response
– magnitude response

Fourier Transforms (2)

14
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Fourier transform pairs

15

F (!) =

Z +1

�1
f(x)e�i2⇡!xdx

f(x) =

Z +1

�1
F (!)ei2⇡!xd!
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Properties

• Linear
• Expansion
• Convolution
• Multiplication

• Differentiation

• Delay/shift
16
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• Parseval’s Theorem

• Preserves “Energy” - overall signal content
• Characteristic of orthogonal transforms

Properties (2)

17
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Proof of convolution theorem

18
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Transforms Pairs

19

Fourier 
Transform

Average 
Filter

Box/Sinc 
Filter
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Transforms Pairs (2)

20

Linear 
Filter

Gaussian 
Filter

derivative 
Filter



© Machiraju/Möller

Transform Pairs - Shah

• Sampling = Multiplication with a Shah 
function:

• multiplication in spatial domain = 
convolution in the frequency domain

• frequency replica of primary spectrum 
(also called aliased spectra)

21

sampling
T 1/T
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General Process of Sampling 
and Reconstruction

22

Original function Sampled function

Reconstructed 
Function

Acquisition

Reconstru
ction

Re-sampled function
Resampling

e.g., supersampling

e.g., resample at screen 
resolution
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How so? - Convolution 
Theorem

23

Frequency Domain:

Multiplication:Convolution:
ω

F

Spatial Domain:
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Sampling Theorem

• A signal can be reconstructed from its 
samples without loss of information if the 
original signal has no frequencies above 1/2 
of the sampling frequency

• For a given bandlimited function, the rate at 
which it must be sampled (to have perfect 
reconstruction) is called the Nyquist 
frequency

• Due to Claude Shannon (1949)
24
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Example

25

Given

Query

2D 1D
Given

Query
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Once Again ...

26

Pr
e-

ali
as

ing

Pre-filter

sampling
Reconstruction 

filter

Post-aliasing
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In the frequency domain

27

Acquisition

Reconstru
ction

Resampling

Original function Sampled function

Reconstructed 
Function Re-sampled function
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Spatial domain Frequency domain

x

*

*

x

Pipeline - Example

sampling

smoothing

28
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Spatial domain Frequency domain

x

x

*

*

Pipeline - Example (2)

smoothing

Re-sampling

29
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Spatial domain Frequency domain

x*

Pipeline - Example (3)

30

reconstruction
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• Non-bandlimited signal – prealiasing 

• Low sampling rate (<= Nyquist) – prealiasing

• Non perfect reconstruction – post-aliasing 

Cause of Aliasing

31

sampling

sampling
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Aliasing example

32
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Aliasing: 

Sampling a Zone Plate

33

sin(x2 + y2)
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Aliasing: 

Sampling a Zone Plate

34

sin(x2 + y2)

Sampled at 128 x 128 
and reconstructed to 512 
x 512 using windowed 
sinc


Left rings: part of the 
signal

Right rings: aliasing due 
to undersampling
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Antialiasing 1: Pre-Filtering

35

Pre-Filtering

Acquisit
ion

Reconstruction

Original function Band-limited function

Sampled 
Function Reconstructed function
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Antialiasing 2: Uniform 
Supersampling

• Increasing the sampling rate moves each 
copy of the spectra further apart, potentially 
reducing the overlap and thus aliasing

• Low-pass filter and then the resulting signal 
is re-sampled at image resolution

36
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Point vs. supersampling

37
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Summary: Antialiasing

• Antialiasing = Preventing aliasing
1.Analytically pre-filter the signal

– Solvable for points, lines and polygons
– Not solvable in general (e.g. procedurally 

defined images)
2.Uniform supersampling and resample
3.Nonuniform or stochastic sampling – later! 

38
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Reconstruction = Interpolation

39

Spatial Domain:

• convolution is exact

Frequency Domain:

• cut off freq. replica
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Example: Derivatives

40

Spatial Domain:

• convolution is exact

Frequency Domain:

• cut off freq. replica
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Reconstruction Kernels

• Nearest Neighbor 
(Box)

• Linear

• Sinc

• Gaussian
• Many others

41
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Interpolation example

42

Nearest neighbor Linear Interpolation
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Ideal Reconstruction

• Box filter in frequency domain =
• Sinc Filter in spatial domain
• Sinc has infinite extent – not practical

43

Smoothing

Post-aliasing

Pass-band    stop-band
Ideal filter

Practical 
filter
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Ideal Reconstruction

• Use the sinc function – to bandlimit the 
sampled signal and remove all copies of the 
spectra introduced by sampling

• But:
– The sinc has infinite extent and we must use 

simpler filters with finite extents.  
– The windowed versions of sinc may introduce 

ringing artifacts which are perceptually 
objectionable.

44



© Machiraju/Möller

Reconstructing with Sinc: 
Ringing

45



– Also have ringing in pass/stop bands
– Realizable filters do not have sharp transitions

© Machiraju/Möller

Low-pass filter band-pass filter high-pass filter

Ideal filters

46

π π π
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Summary: possible errors
• Post-aliasing

– reconstruction filter passes frequencies beyond the 
Nyquist frequency (of duplicated frequency spectrum) 
=> frequency components of the original signal appear 
in the reconstructed signal at different frequencies

• Smoothing due to prefiltering
– frequencies below the Nyquist frequency are attenuated

• Ringing (overshoot)
– occurs when trying to sample/reconstruct discontinuity

• Anisotropy
– caused by not spherically symmetric filters

47



© Machiraju/Möller

Higher Dimensions?

• Design typically in 1D
• Extensions to higher dimensions (typically):

– Separable filters
– Radially symmetric filters
– Limited results

• Research topic

48

T

?
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Aliasing vs. Noise

49
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Distribution of Extrafoveal 
Cones

• Yellot theory (1983)
– Structured aliases replaced by noise
– Visual system less sensitive to high freq noise

Monkey eye cone distribution Fourier Transform

50
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Non-Uniform Sampling - 
Intuition

• Uniform sampling
– The spectrum of uniformly spaced samples is also a set of 

uniformly spaced spikes
– Multiplying the signal by the sampling pattern corresponds 

to placing a copy of the spectrum at each spike (in freq. 
space)

– Aliases are coherent, and very noticeable
• Non-uniform sampling

– Samples at non-uniform locations have a different 
spectrum; a single spike plus noise

– Sampling a signal in this way converts structured aliases 
into broadband noise

– Noise is incoherent, and much less objectionable 51
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Uniform vs. non-uniform point 
sampling

Uniformly sampled 
40x40

Uniformly jittered 
40x40

52
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Non-Uniform Sampling 
Patterns

• Poisson
– Pick n random points in sample space

• Uniform Jitter
– Subdivide sample space into n regions

• Poisson Disk
– Pick n random points, but not too close

53
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Poisson Disk Sampling

Fourier DomainSpatial Domain

54
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Uniform Jittered Sampling

Fourier DomainSpatial Domain

55
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Non-Uniform Sampling - 
Patterns

• Spectral characteristics of these 
distributions:
– Poisson: completely uniform (white noise).  

High and low frequencies equally present
– Poisson disc: Pulse at origin (DC component of 

image), surrounded by empty ring (no low 
frequencies), surrounded by white noise

– Jitter: Approximates Poisson disc spectrum, but 
with a smaller empty disc.

56
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Stratified Sampling

• Divide sample space into stratas
• Put at least one sample in each strata
• Also have samples far away from each other 

– samples too close to each other often 
provide no new information

• Example: uniform jittering

57



© Machiraju/Möller

Jitter

• Place samples in the grid
• Perturb the samples up to 1/2 width or 

height

58



© Machiraju/Möller

“ideal” – 256 samples/pixel Jitter with 1 sample/pixel

1 sample/pixel uniform and 
unjittered Jitter with 4 samples/pixel

Texture Example 

59
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Multiple Dimensions

• Too many samples
• 1D
• 2D                                        3D

60
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Jitter Problems

• How to deal with higher dimensions?
– Curse of dimensionality
– D dimensions means ND “cells” (if we use a 

separable extension)
• Solutions:

– We can look at each dimension independently 
and stratify, after which randomly associate 
samples from each dimension

– Latin Hypercube (or N-Rook) sampling
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Multiple Dimensions
• Make (separate) strata for each dimension 
• Randomly associate strata among each other
• Ensure good sample “distribution”

– Example: 2D screen position; 2D lense 
position; 1D time
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Aside: alternative sampling lattices

• Dividing space up into equal cells doesn’t 
have to be on a Cartesian lattice

• In fact - Cartesian is NOT the optimal way 
how to divide up space uniformly

Cartesian Hexagonal is optimal in 2D
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Aside: optimal sampling lattices
• We have to deal with different geometry
• 2D - hexagon
• 3D - truncated octahedron
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• Generate a jittered sample in each of the diagonal 
entries

• Random shuffle in each dimension
• Projection to each dimension corresponds to a 

uniform jittered sampling

Latin Hypercubes (LHS) or N-
Rooks in 2D
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Generate n samples (si
1, si

2, …, si
k) in k dimensions

• Divide each dimension into n cells
• Assign a random permutation of n to each dimension
• Sample coordinates are jittered in corresponding cells 

according to indices from the permutations

LHS or N-Rooks in k-D

7 5 8 1 4 10 3 9 2 6
3 5 1 6 9 4 8 2 7 10
7 10 3 9 1 8 2 5 6 4

k = 3

n = 10s3
1 is from the 8-th cell from dimension 1
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Stratification - problems

• Clumping and holes due to randomness and 
independence between strata

• LHS can help but no quality assurance due 
to random permutations, e.g., diagonal

}

Other geometries, e.g. stratify 
circles or spheres?
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How good are the samples ?
• How can we evaluate how well our samples 

are distributed in a more global manner?
– No “holes”
– No clumping

• Well distributed patterns are low-discrepancy 
– more evenly distributed

• Want to construct low-discrepancy sequence
• Most of these are deterministic!
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Discrepancy
• Intuition: for a well distributed set of samples in 

[0,1]n, the relative volume of any sub-region should 
be close to the relative percentage of points therein

• For a particular set B of sub-volumes of [0,1]d and a 
sequence P of N sample points in [0,1]d 

• E.g., for the marked sub-volume,                               
we have |7/22 – ¼| ≤ D22(B, P)

•

•

•

• • •

•
•

•

• •
• •

•

•
•

•

•

• •
• •
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Discrepancy

• Examples of sub-volume sets B of [0,1]d:
– All axis-aligned
– All those sharing a corner at the origin (called 

star discrepancy          )

• Asymptotically lowest discrepancy that has 
been obtained in d dimensions:
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Discrepancy

• How to create low-discrepancy sequences?
– Deterministic sequences! Not random anymore
– Also called pseudo-random
– Advantage: easy to compute

• 1D:
What happens if 
B = all intervals?Optimal yet 

uniform:
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Pseudo-Random Sequences 

• Radical inverse
– Building block for high dimensional sequences
– “inverts” an integer given in base b
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• One of the simplest 1D sequence:
• Uses radical inverse of base 2
• Asymptotically 

optimal discrepancy
i            binary     radical     xi

           form of i   inverse


0	 0	 0.0	 0

1	 1	 0.1	 0.5

2	 10	 0.01	 0.25

3	 11	 0.11	 0.75

4	 100	 0.001	 0.125

5	 101	 0.101	 0.625

6	 110	 0.011	 0.375

0 12 34

Van Der Corput Sequence
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• Use a prime number basis for each dimension
• Achieves best possible discrepancy 

asymptotically

• Can be used if N, the number of samples, is 
not known in advance — all prefixes of a 
Halton sequence are well distributed

Halton 
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Hammersley Sequences

• Similar to Halton
• But need to know N, the total number of 

samples, in advance
• Slightly lower discrepancy than Halton

Prime numbers
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Halton vs. Hammersley

First 100 samples in [0, 1]2
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Hammersley Sequences

In 2D, xi = (i/N, Φp1(i))


As p1 increases, the pattern 
becomes regular, resulting in 
aliasing problems
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Hammersley Sequences

Similar behavior on the sphere.


Samples on the sphere are 
obtained by wrapping the 
square into a cylinder and then 
doing a radial projection
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Folded Radical Inverse

• Modulate each digit in the radical inverse 
by an offset than modulo with the base

• Hammersley-Zaremba or Halton-Zaremba
• Improves discrepancy
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Halton and Hammersley folded
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(t,m,d) nets
• Most successful constructions of low-discrepancy 

sequences are (t,m,d)-nets and (t,d)-sequences.
• Basis b: a prime or prime power
• 0 =< t =< m
• A (t,m,d)-net in base b is a point set in [0,1]d 

consisting of bm points, such that every box 
 
 
of volume bt-m contains bt points

Reference: www.mathdirect.com/products/qrn/resources/Links/
QRDemonstration_lnk_4.html

Optimal in absolute terms
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(t,d) Sequences
• (t,m,d)-nets ensures that samples are well distributed 

for particular integer subdivisions of the space.
• A (t,d)-sequence in base b is a sequence xi of points 

in [0,1]d such that for all integers k ≥ 0 and m > t, the 
point set 

    is a (t,m,d)-net in base b.
• The number t is the quality parameter. 

– Smaller t yield more uniform nets and sequences because 
b-ary boxes of smaller volume still contain points.

Reference: www.mathdirect.com/products/qrn/resources/Links/
QRDemonstration_lnk_4.html

bm 
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(t,d) = (0,2) sequences
• Used in pbrt for the Low-discrepancy sampler
• First and succeeding block of 16 = 24 samples in the 

sequence give a (0,4,2) net
• First and succeeding block of 8 = 23 samples in the 

sequence give a (0,3,2) net
• etc.

All possible uniform divisions into 
16 rectangles:


One sample in each of 16 rectangle

N-rook property
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Practical Issues

• Create one sequence
• Create new ones from the first sequence by 

“scrambling” rows and columns
• This is only possible for (0,2) sequences, 

since they have such a nice property (the “n-
rook” property)
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Texture

Jitter with 1 sample/pixel

Hammersley Sequence with 1 sample/pixel
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Best-Candidate Sampling
• Jittered stratification 

– Randomness (inefficient)
– Clustering problems between adjacent strata
– Undersampling (“holes”)

• Low Discrepancy Sequences
– No explicit preventing two samples from coming to close

• “Ideal”: Poisson disk distribution
– too computationally expensive

• Best Sampling - approximation to Poisson disk –a 
form of farthest point sampling



© Machiraju/Möller

Poisson Disk 
• Comes from structure of eye – rods and                      

cones
• Dart Throwing
• No two points are closer than a threshold
• Very expensive
• Compromise – Best Candidate Sampling

– Every new sample is to be farthest from previous 
samples amongst a set of randomly chosen candidates

– Compute pattern which is reused by tiling the image 
plane (translating and scaling).

– Toroidal topology
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Best-Candidate Sampling

Jittered Poisson Disk Best Candidate
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Best-Candidate Sampling

Jittered
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Best-Candidate Sampling

Poisson Disk
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Best-Candidate Sampling

Best Candidate
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Dart throwing
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Texture
Jitter with 1 sample/pixel Best Candidate with 1 sample/pixel

Jitter  with 4 sample/pixel Best Candidate with 4 sample/pixel
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Next

• Rendering Equation 
• Probability Theory
• Monte Carlo Techniques


