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Reading

Chapter 7 of “Physically Based Rendering” by
Pharr&Humphreys

Chapter 14.10 of “CG: Principles & Practice”
by Foley, van Dam et al.

Chapter 4, 5, 8,9, 10 1n “Principles of Digital
Image Synthesis,” by A. Glassner

Chapter 4, 5, 6 of “Digital Image Warping” by
Wolberg

Chapter 2, 4 of “Discrete-Time Signal
Processing” by Oppenheim, Shafer
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Motivation

We live 1n a continuous world
Computer can only offer finite, discrete rep.
To discretize a continuous phenomenon

— Take a finite number of samples — sampling

— Use these samples to reconstruct an
approximation of the continuous phenomenon

To get the best approximation, need to be
intelligent with sampling and reconstruction
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It not caretul ...

* Artifacts can be caused by both sampling
(pre-) and reconstruction (post-aliasing):

— Jaggies

— Moire

— Flickering small objects
— Sparkling highlights

— Temporal strobing

* Preventing these artifacts - Antialiasing
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Signhal processing and
sampling
e Signal transform in a black-box

f\/\ 4* "System" or {_, /\_\

Algorithm

e Sampling or discretization:

Multiplication with | ]
\/\-* '\» L

"shah"” function
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Reconstruction (examples)

* nearest neighbor

M_» Convolution wi‘rh T}TVFFT
| box filter | :

e linear filter:

M_» Convolution wu’rh M
| tent filter

© Machiraju/Moller



Main issues/guestions

e Can one ever perfectly reconstruct a
continuous signal? — related to how many
samples to take — the 1deal case

* In practice, need for antialiasing techniques

— Take more samples — supersampling then
resampling

— Modity signal (prefiltering) so that no need to
take so many samples

— Vary sampling patterns — nonuniform sampling
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Motivation- Graphics

Original “manipulated”
—
(continuous) signal “Graphics" (continuous) signal
(7 sampling

Reconstruction \ sampled
filter

signal
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Basic concept 1: Convolution

e How can we characterize our “black box”?

* We assume to have a “nice” box/algorithm:
— linear
— time-1nvariant

* then it can be characterized through the
response to an “impulse’:

"System" or
- Algorithm /\/\’\
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Convolution (2)

e Impulse:

0(x)=0,if x=0

}6 (x)dx =1

e discrete impulse: §
0

L4
o

=0,if k =0
-1

* Finite Impulse Response (FIR) vs.

 Infinite Impulse Response (IIR)
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Convolution (3)

e Continuous convolution ...

e Discrete: an signal x[k] can be written as:

x[k]= ...+ x[-110[k + 1]+ x[O]0[ k] + x[1]0[k —1] + ...

* et the impulse response be h[k]:

"System” or
6[k] —* Algorithm .‘_> h[k]
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Convolution (4)

e for a linear time-

invariant system h, h[k-n]

would be the impulse response to a delayed

impulse O[k-n]

* hence, if y[k] 1s the response of our system

to the mput x[k]

system):
’ ylk] =

n

xX[kK] =

(and we assume a linear
N

[IR - N=inf.
E x[nlhlk=n]  oR N<int
=N

"System” or | >
Algorithm Y[k]
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Basic concept 2: Fourier
Transforms

e Let’s look at a special input sequence:

x[k] _ ei(x)k

 Then applying to a linear, time-invariant h:

N

ylkl= Y e h[n]

_ ook Ee—iwnh[n]

n=-—N

_ H((D)ei(x)k
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Fourier Transforms (2)

View h as a linear operator (circulant matrix)

Then ™ is an eigen-function of h and H(w)

its eigenvalue

H(w) 1s the Fouriler-Transform of the h[n] and
hence characterizes the underlying system in

terms of frequencies

H(w) 1s periodic with period 27
H(w) 1s decomposed 1nto
— phase (angle) response < H(w)
— magnitude response ‘H (W )‘
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Fourier transform pairs

Flw) = / " b )e e g

f@ = [ F@ermea

© Machiraju/Moller
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Properties

e Linear af (x) +bg(x) < aF(w)+bG(w)

e Expansion f(ax) < 1/aF(w/a)
f(x)®g(x) = F(o)xG(w)

e Multiplication J(X)xg(x) < F(w)®G(w)

j—lf(x) & (i)' F()
X

f(x-1)=e"F(w)

e Differentiation

e Delay/shift

© Machiraju/Moller
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Properties (2)

e Parseval’s Theorem
ffz(x)dx = sz(m)doo

* Preserves “Energy” - overall signal content

* Characteristic of orthogonal transforms

© Machiraju/Moller
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Proof of convolution theorem

f: [f: J()gx - Y)dy]e‘iz““”xdx

- [ /)
=[S

-£+:g(x . y)e—iZIcwxdx:Idy

-f+oog(z)e_i2“w(y+z)dzldy Z=X—-Y

- (1) G0y = F(@)G(©)

© Machiraju/Moller
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Transforms Pairs

W = Four'ier'

35
3
25
2
L5
1
0.5
0
0.5
-1

Sinc(t)

h

J\/vv\.

-10-864-202 46 810

- N

Transform
35 Sinf:(t)
I
Average 15
ang e
Filter 0
_O_?J\N\/\‘ | J\/\/\/\
-10-8-64 -2 0 2 4 6 810
Box/Sinc
) . N
Filter
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Transforms Pairs (2)

Linear
Filter

CO00
O oo —

Gaussian

Filter

s Cosc(t)
1
deri '
erivative
0
. j\/\/\/\/\/\N\/\‘ ﬁ
-1
-1.5_‘3 20 15 -10 =) U TO TS (1) 5

Filter
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Transform Pairs - Shah

e Sampling = Multiplication with a Shah
function:

L1 = wioa > [ [ | |

* multiplication in spatial domain =
convolution in the frequency domain

e frequency replica of primary spectrum
(also called aliased spectra)
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General Process of Sampling
and Reconstruction

Original fUhCTIOh Sampled function

M’ o.g. supersampling

Re-sampled func’rlon

K /\ [\ Resamplin Y AR
TRVAVA Y

Reconstructed

Function

e.g., resample at screen
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How so? - Convolution
Theorem

Spatial Domain: Frequency Domain:

A
‘{
A

1 A

Convolution: Multiplication:
[ £(t)xg(x —1)dt F(0)xG(o)

© Machiraju/Moller
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Sampling Theorem

* A signal can be reconstructed from its
samples without loss of information if the
original signal has no frequencies above 1/2
of the sampling frequency

* For a given bandlimited function, the rate at
which 1t must be sampled (to have perfect
reconstruction) 1s called the Nyquist

frequency
e Due to Claude Shannon (1949)

© Machiraju/Moller
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Once Again ...

Reconstruction
filter

Pre-filter

Mac
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In the frequency domain

Original function Sampled function
Acquisition
/\ - A
Reconstructed
Func:non Re-sampled function

Resampling
/)

|
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Pipeline - Example

Spatial domain Frequency domain

3

sampling

smoothing 1

© Machiraju/Moller
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Pipeline - Example (2)
Spatial domain Frequency domain

smoothing *

Re-sampling 7 .

© Machiraju/Moller
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Pipeline - Example (3)

Spatial domain Frequency domain

reconstruction dl%

© Machiraju/Moller
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Cause of Aliasing

* Non-bandlimited signal — prealiasing

>

* Low sampling rate (<= Nyquist) — prealiasing
/l\ : sampling X W ‘

* Non perfect reconstruction — post-aliasing
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Aliasing example

© Machiraju/Moller
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Aliasing
Sampling a Zone Plate

33
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Aliasing:
Sampling a Zone Plate

Sampled at 128 x 128
and reconstructed to 512
x 512 using windowed
sinc

Left rings: part of the
signal

Right rings: aliasing due
to undersampling

© Machiraju/Moller
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Antialiasing 1: Pre-Filtering

Original function

Band-limi’rgd function
Pre-Filtering
ﬁ

Sampled

Function

A

/\

A

Reconstructed function

Reconstruction
—

>

[

L
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Antialiasing 2: Uniform
Supersampling

e Increasing the sampling rate moves each
copy of the spectra further apart, potentially
reducing the overlap and thus aliasing

* Low-pass filter and then the resulting signal
1s re-sampled at 1image resolution

Pixel = E w, xSample, O
k

O O O O
o O O O
O O O O
O O O O

© Machiraju/Moller
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Point vs. supersampling

Point 4x4 Supersampled

Checkerboard sequence by Tom Duff

© Machiraju/Moller
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Summary: Antialiasing

* Antialiasing = Preventing aliasing
1.Analytically pre-filter the signal

— Solvable for points, lines and polygons

— Not solvable in general (e.g. procedurally
defined images)

2.Uniform supersampling and resample

3.Nonuniform or stochastic sampling — later!
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Reconstruction = Interpolation

Spatial Domain:

« convolution is exact

1 f.(x)-f(x)=0

Frequency Domain:

+ cut off fregq. replica

|

Sinc(x)= sinyfxnx)

0.6 0.95
0.4 f 0.9
I
I 0.85
0.2 :
1 0.8
0 H
| 0.75
I
- I
0.2 i 0.7
I
0.4 : : . : ' : : : : 0.6
-25 -20 -15 -10 -5 0 5 10 15 20 25
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Example: Derivatives

Spatial Domain: Frequency Domain:
» convolution is exact - cut off freq. replica

X JTX

frd (x)_ f'(x)= 0 Cosc(x)= cos(:mx)_ sin(rzcx)

© Machiraju/Moller



Reconstruction Kernels

e Nearest Neighbor ’\
(Box) -

e [.inear ’

e Sinc

e (Gaussian

cooo
ION P~ OO0~

 Many others

5046

6 4 -2 0 2 4

Spatial d. Frequency d.
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Interpolation example

Nearest neighbor Linear Interpolation

© Machiraju/Moller
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|deal Reconstruction

* Box filter in frequency domain =
* Sinc Filter in spatial domain

* Sinc has infinite extent — not practical

Pass-band stop-band

| ——— Smoothing

Practical
filter

Post-aliasing

© Machiraju/Moller
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|deal Reconstruction

e Use the sinc function — to bandlimit the
sampled signal and remove all copies of the
spectra introduced by sampling

e But:

— The sinc has infinite extent and we must use
simpler filters with finite extents.

— The windowed versions of sinc may introduce

ringing artifacts which are perceptually
objectionable.

© Machiraju/Moller
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Reconstructing with Sinc:
RiNging

© Machiraju/Moller
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A

|deal filters

— Also have ringing 1n pass/stop bands

— Realizable filters do not have sharp transitions

I n |

>
| - I " I

JC T JT

Low-pass filter = band-pass filter high-pass filter

© Machiraju/Moller
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Summary: possible errors

Post-aliasing

— reconstruction filter passes frequencies beyond the
Nyquist frequency (of duplicated frequency spectrum)
=> frequency components of the original signal appear
in the reconstructed signal at different frequencies

Smoothing due to prefiltering

— frequencies below the Nyquist frequency are attenuated

Ringing (overshoot)

— occurs when trying to sample/reconstruct discontinuity

Anisotropy

— caused by not spherically symmetric filters

47



Higher Dimensions”?

e Design typically in 1D
» Extensions to higher dimensions (typically):

— Separable filters
— Radially symmetric filters A
— Limited results ~—

e Research topic /\
|+ —

© Machiraju/Moller 48



Aliasing vs.

© Machiraju/Moller
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Distribution of Extrafoveal
Ccones
* Yellot theory (1983)

— Structured aliases replaced by noise

— Visual system less sensitive to high freq noise

Monkey eye cone distribution Fourier Transform

© Machiraju/Moller
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Non-Uniform Sampling -
Intuition

e Uniform sampling

— The spectrum of uniformly spaced samples 1s also a set of
uniformly spaced spikes

— Multiplying the signal by the sampling pattern corresponds
to placing a copy of the spectrum at each spike (in freq.
space)

— Aliases are coherent, and very noticeable
e Non-uniform sampling

— Samples at non-uniform locations have a different
spectrum; a single spike plus noise

— Sampling a signal in this way converts structured aliases
into broadband noise

— Noise is incoherent, and much less objectionable
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Uniform vs. non-uniform point

‘ |
. ' . B
: < i 7
. . i
(b) i :
3 i
5 : {
&
(c)

Uniformly sampled Uniformly jittered
40x40 40x40
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Non-Uniform Sampling

e Poisson

Patterns

— Pick n random points 1n sample space

e Uniform Jitter

— Subdivide sample space into n regions

e Poisson Disk

— Pick n random points, but not too close

»
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Poisson Disk sampling
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Uniform Jittered Sampling
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Non-Uniform Sampling -
Patterns

e Spectral characteristics of these
distributions:

— Poisson: completely uniform (white noise).
High and low frequencies equally present

— Poisson disc: Pulse at origin (DC component of
image), surrounded by empty ring (no low
frequencies), surrounded by white noise

— Jitter: Approximates Poisson disc spectrum, but
with a smaller empty disc.

© Machiraju/Moller s6



Stratified Sampling

Divide sample space into stratas
Put at least one sample in each strata

Also have samples tar away from each other
— samples too close to each other often
provide no new information

Example: uniform jittering

© Machiraju/Moller
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Jitter

e Place samples in the grid

e Perturb the samples up to 1/2 width or
height

Random Jitlered
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Texture Example

“1deal” — 256 samples/p1xel Jltter Wlth 1 sample/plxel

R R “!W* RS

uniform an!

© Machiraju/Moller

1 sample/pixel

unjittered Jitter with 4 samples/pixel
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Multiple Dimensions

 Too many samples

e 1D (oto—to—+—0
e 2D 3D
@) OO © DN
O o o
ol © 9Olo
ol o “p

© Machiraju/Moller
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Jitter Problems

 How to deal with higher dimensions?
— Curse of dimensionality

— D dimensions means NP “cells” (if we use a
separable extension)

e Solutions:

— We can look at each dimension independently
and stratify, after which randomly associate
samples from each dimension

— Latin Hypercube (or N-Rook) sampling

© Machiraju/Moller



Multiple Dimensions

 Make (separate) strata for each dimension
 Randomly associate strata among each other

 Ensure good sample “distribution”

— Example: 2D screen position; 2D lense
position; 1D time




Aside: alternative sampling lattices

e Dividing space up into equal cells doesn’t
have to be on a Cartesian lattice

e In fact - Cartesian 1s NOT the optimal way
how to divide up space uniformly

Cartesian Hexagonal is optimal in 2D
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Aside: optimal sampling lattices

* We have to deal with different geometry
e 2D - hexagon
e 3D - truncated octahedron

£
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Latin Hypercubes (LHS) or N-
Rooks In 2D

* Generate a jittered sample 1n each of the diagonal
entries

e Random shuffle in each dimension

* Projection to each dimension corresponds to a
uniform jittered sampling

O

= _% O
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L HS or N-Rooks In k-D

Generate n samples (st, s, ..., st,) In k dimensions

e Divide each dimension into n cells

e Assign a random permutation of n to each dimension

* Sample coordinates are jittered in corresponding cells
according to indices from the permutations

7 15 [8.[1 |4 [10]3 |9 |2 |6
s (3 [5 [1]]6 |9 |4 [8 |2 |7 |10
7 [10]3 /{9 |1 |8 |2 |5 |6 |4

k

$3, is from the 8-th cell from dimension 1 n

10
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Stratification - problems

e Clumping and holes due to randomness and
independence between strata

 LHS can help but no quality assurance due
to random permutations, e.g., diagonal

o o
ol olo o} o O
O Ooo O O O
ARNEs
ol o] o ol ol ol

Other geometries, e.g. stratify

circles or spheres?
© Machiraju/Moller



How good are the samples 7

How can we evaluate how well our samples
are distributed 1n a more global manner?

— No “holes”

— No clumping

Well distributed patterns are low-discrepancy
— more evenly distributed

Want to construct low-discrepancy sequence

Most of these are deterministic!

© Machiraju/Moller



Discrepancy

e Intuition: for a well distributed set of samples 1n
[0,1]n, the relative volume of any sub-region should
be close to the relative percentage of points therein

e For a particular set B of sub-volumes of [0,1]
sequence P of N sample points in [0,]1]d

dand a

D, (B,P)=sup i Eb) Voz(b)| o

bEB ° °

e E.g., for the marked sub-volume, .
we have |7/22 — Y%l < D,,(B, P) oo
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Discrepancy

e Examples of sub-volume sets B of [0,1]d:
— All axis-aligned

— All those sharing a corner at the origin (called
star discrepancy Dy (P))

* Asymptotically lowest discrepancy that has
been obtained 1n d dimensions:

(logN)d\+

D,(P)=0 v

© Machiraju/Moller



Discrepancy

* How to create low-discrepancy sequences?
— Deterministic sequences! Not random anymore
— Also called pseudo-random
— Advantage: easy to compute

e 1D: 2 \ _ 1
xi_ﬁ nd DN(xD’”’xN)_N What happens if

B = all intervals?

Optimal yet —0. . 1
S0 L Dty )

uniform: X,

N 2N
¥ 1 2i -1
In general, D, (x,,...,Xy)=——+ max|x, —
g v (% ) N e N |
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Pseudo-Random Sequences

e Radical inverse
— Building block for high dimensional sequences
— “Inverts” an integer given 1n base b
n=a,..aa =ab’ +ab +ab’+..

®,(n)=0.aa,.a, =ab” +a,b” +ab” +...

a,...a,da, 0.q,a,...a,

A
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Van Der Corput Sequence

* One of the simplest 1D sequence: x, =®,(i)

e Uses radical inverse of base 2

* Asymptotically i binary radical X
optimal discrepancy form of /__inverse
0 0 00 0
: log N -
DN(P)=0( Ozgv >_ 1 1 01 05
2 10 001 025
0 4 2 , ; 3 11 011 075
NN i h 4 100 0001 0.125
T T 15 101 0101 0625

6 110 0.011 0.375
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Halton

o Use a prime number basis for each dimension
e Achieves best possible discrepancy

asymptotically . _ @, ).,).®,)...®, (i)

(logN)’ \_

D,(P)=0 v

e Can be used 1f N, the number of samples, 1s
not known 1n advance — all prefixes of a
Halton sequence are well distributed
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Hammersley Sequences

e Similar to Halton

e But need to know N, the total number of
samples, in advance

e Slightly lower discrepancy than Halton

x.=(i

= (5, (0.2, (1), P, (D)

/

Prime numbers

© Machiraju/Moller



Halton vs. Hammersley

hd Ld r
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Hammersley Sequences

.t
------------
------
A TR R -
- . - "
................................
..................
.............
.........
..........
............
...........
..........
-------
...........

. - -
.........
........................
....................
........................
........................
............................
--------------
......

-------
.
...............
-----------
. s . - . . . . . B .
.
...............
--------------
--------------
-------------
.............
----------------------
.........

(a) random (bypr =2 (eyp =7 (Hpr =11

........
...................

.... .... ----- } In 2D, X = ([/N’ (I)p1 (/))
goe ;'-." B R o : _."_.-'._-' B _-"_f'_;'_." B s . As p, increases, the pattern
...... o :::: R becomes regular, resulting in
el Lo | aliasing problems
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Hammersley Sequences

(e)p =7 (Hp =11

Similar behavior on the sphere.

Samples on the sphere are
obtained by wrapping the
square into a cylinder and then
doing a radial projection

(c)pr=3 (dyp =5
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Folded Radical Inverse

 Modulate each digit in the radical inverse
by an offset than modulo with the base

e Hammersley-Zaremba or Halton-Zaremba

e Improves discrepancy

]

D,(n) = ZQZE

D, (n)= i((ai +1- l)modb)é
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Halton and Hammersley folded
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(t,m,d) nets

e Most successtul constructions of low-discrepancy
sequences are (t,m,d)-nets and (t,d)-sequences.

e Basis b: a prime or prime power

e 0=<t=<m

A (t,m,d)-net in base b 1s a point set in [0,]1]d
consisting of bm points, such that every box

d d
E = HEzib'cf,(ai +1p )Where ch. =m—t

of volume btm contains bt points =
Osp}tlmal )n absolute terms

Reference: www.mathdirect.com/products/grn/resources/Links
QRDemonstration_Ink 4.html
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(t,d) Sequences

e (t,m.,d)-nets ensures that samples are well distributed
for particular integer subdivisions of the space.

e A (t,d)-sequence 1n base b 1s a sequence x; of points
in [0,1]d such that for all integers k = 0 and m > t, the

point set %i b < < (k N lb’"J

bml I |

1s a (t,m,d)-net 1n base b. | |

 The number t i1s the quality parameter.

— Smaller t yield more uniform nets and sequences because

b-ary boxes of smaller volume still contain points.
Reference: www.mathdirect.com/products/grn/resources/Links/

QRDemonstration_Ink_4.html
© Machiraju/Moller



(t,d) = (0,2) sequences

e Used in pbrt for the Low-discrepancy sampler

e First and succeeding block of 16 = 24 samples 1n the
sequence give a (0,4,2) net

e First and succeeding block of 8 = 23 samples in the
sequence give a (0,3,2) net

e cfc.

All possible uniform divisions into
16 rectangles:

One sample in each of 16 rectangle

© Machiraju/Moller N-rook property



Practical Issues

* Create one sequence

e Create new ones from the first sequence by
“scrambling” rows and columns

e This 1s only possible for (0,2) sequences,
since they have such a nice property (the *“n-
rook”™ property)

© Machiraju/Moller



Textu re

i, p

Jitter With 1 sample/pixel

Hammersley Sequence with 1 sample_



Best-Candidate Sampling

Jittered stratification
— Randomness (inefficient)
— Clustering problems between adjacent strata
— Undersampling (“holes™)

Low Discrepancy Sequences

— No explicit preventing two samples from coming to close

“Ideal”: Poisson disk distribution
— too computationally expensive

Best Sampling - approximation to Poisson disk —a
form of farthest point sampling

© Machiraju/Moller



Poisson Disk ©®
OONGRO
©©® &
Comes from structure of eye — rods and 0 (®
cones 0520,

Dart Throwing
No two points are closer than a threshold
Very expensive

Compromise — Best Candidate Sampling

— Every new sample is to be farthest from previous
samples amongst a set of randomly chosen candidates

— Compute pattern which 1s reused by tiling the image
plane (translating and scaling).

— Toroidal topology

© Machiraju/Moller



Best-Candidate Sampling
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Jittered Poisson Disk Best Candidate
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Best-Candidate Sampling

Jittered
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Best-Candidate Sampling

Poisson Disk




Best-Candidate Sampling

Best Candidate
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T
ENANNEE]
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Dart throwing

140

whilei < N
r; ¢+ unit ()
Y; ¢ unit ()
reject +— false

Throw a dart.

fork«<0toi—1
d +— (zi — ) + (i — yr)*

Check the distance to all other samples.

if d < (2rp)? then
reject +— true
break
endif

This one is too close—forget it.

endfor

if not reject then
i1+ 1
endif

Append this one to the pattern.

endwhile




Texture

Jltter W|th 1 sample/plxel Best Candldate W|th 1 sample/pixel
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Jitter with 4 sample/pixel Best Candidate with 4 sample/pixel
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Next

 Rendering Equation
e Probability Theory
 Monte Carlo Techniques
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