Comprehensive Overview

Image Synthesis
Torsten Möller
Holy Grail
Topics

• Focus on image synthesis
• Physically based rendering
 – Global illumination
 – Radiometric quantities, radiance
 – Rendering equation
 – Local illumination models
 – Monte-Carlo methods and ray-tracing
 – Radiosity
• Interactive rendering
 – Direct illumination
 – Scanline conversion and projection methods
 – Textures and texture mapping
 – Shaders
 – Graphics hardware, GPUs (graphics processing units)
 – Real-time shadows
Topics cont.

• Image synthesis pipeline
 – Human visual perception
 – Tone mapping

• However, not covered in this course:
 – Non-photorealistic rendering (NPR)
 • Artistic rendering
 • Illustrations, visualization
Photorealism vs. Interactivity

• Realistic images (“like photographs“) by physical simulation of
 – Light emission and propagation
 – Interaction between light and matter (reflection, scattering, …)
 – Image formation (image recording, human visual perception)
 – In general, realistic image synthesis is computationally expensive and non-interactive

• Interactive graphics
 – Less realistic
 – Lots of approximations and “dirty” tricks
 – Programmable graphics hardware (GPUs) allow for increasingly realistic real-time rendering
Holy Grail of Photorealistic Rendering
Example
Example

© blue moon rendering
Example
Example
Example
Course topics

• Laws of image generation
 – Physics of Light - Optics, Transport
• Mechanics of image generation
 – Global Illumination
• Display Mechanism
 – Perception
• Efficient Mechanics
Image formation
Framework

Research Framework for Realistic Image Synthesis

© 1997 Cornell Program of Computer Graphics
Generic Framework

Acquisition -> Light Transport -> Visual Display -> Observer

Geometry BRDFs Lights Textures -> Radiometric Values -> Image

[Greenberg et al. 97]
Key Terms

- **Description of light**
 - Physical quantities, photometry

- **Illumination model**
 - Determine the color of a surface (data) point by simulating some light attributes

- **Local illumination**
 - Deals only with isolated surface (data) point and direct light sources

- **Global illumination**
 - Takes into account the relationships between all surfaces (points) in the environment

- **Shading model**
 - Applies the illumination models at a set of points and colors the whole scene
Description of Light

© 1994 by John Mardaljevic – Radiance Software
Measure It!

Equipment in the Light Measurement Laboratory (circa 1995) of the Cornell University Program of Computer Graphics

© Machiraju/Möller
Local Illumination

• Local reflection
 – Building block for complete illumination computation

• Local illumination models
 – Heuristic
 – Physics-based
 – Measured data
Global Illumination

- Global problem: each point might affect the illumination of any other point
- This makes illumination computations complicated
 - Use appropriate numerical methods
 - Efficient algorithms
 - Approximations and simplifications

What is the “intensity” of this surface in all possible directions?
Shading

Flat shading

Gouraud shading

© 1995 Foley, van Dam et al.

Gouraud shading

Phong shading
Physically Based Illumination

- Everything so far has been pretty heuristic
- cannot model:
 - wavelength dependent phenomena
 - anisotropic behaviours
 - many other physical phenomena (real physics)
- ongoing research - main contributions
 - Hanrahan, Krüger (1993)
Light Simulation - Global Illumination

Streaming

\[\vec{\omega} \cdot \nabla L(x, \vec{\omega}) = L_o(x, \vec{\omega}) - \sigma_a(x)L(x, \vec{\omega}) - \sigma_s(x)L(x, \vec{\omega}) \]

Absorption

Out-scattering

Outgoing Emittance

\[L_o(x, \vec{\omega}_o) = L_e(x, \vec{\omega}_o) + \sigma_s(x) \int_{\Omega} f_r(x, \vec{\omega}_o, \vec{\omega}_i)L_i(x, \vec{\omega}_i)d\vec{\omega}_i \]

In-scattering

© Machiraju/Möller
Challenges

• Primitives complex: lights, materials, shapes

• Materials
 – Interfaces: reflectance and texture
 – Medium: scattering

• Camera

• Large number of paths

• Solution:
 – Radiosity - Finite Elements
 – Ray Tracing - Monte Carlo
Radiosity

• Finite element methods
• Not efficient - storage
• Meshing problems
 – curved surfaces
 – shadows
• Cannot do it all:
 – Complex effects beyond diffuse
Monte Carlo Ray Tracing?

- Distributed Ray Tracing
- Path Tracing
- Metropolis Light Transport
- Bi-Directional Path Tracing
- Photon Maps
Caustics

Indirect Illumination
SubSurface Scattering

"A Practical Model for Subsurface Light Transport"
Henrik Wann Jensen, Steve Marschner, Marc Levoy, and Pat Hanrahan
Proceedings of SIGGRAPH'2001, pages 511-518, Los Angeles, August 2001
Translucency

© 2001 Jensen, Marschner, Levoy, Hanrahan
"Visual Simulation of Smoke"
Ronald Fedkiw, Jos Stam, and Henrik Wann Jensen
Display Limitations

© 2001 Richard Sharp
Real-Time Rendering

- Approximations of the full light transport equation
 - Up to shadow computation and reflections
- Use of special hardware: GPUs (graphics processing units)
 - Shaders and shading languages
- Textures to encode detail information
Tone Mapping and Visual Perception

- Issue: How do we perceive images?
- There is a lot of processing done by the human visual system
 - Especially in stages of early vision
 - Just a direct display of physical light quantities is not good enough
- Add a perception-aware stage to the image processing pipeline
- Related issue: restrictions of output display
 (color gamut, contrast, and brightness)

- a) daylight: 1000 cd/m^2
- c) moonlight: 0.04 cd/m^2
Non-Photorealistic Rendering

• Rendering alternatives

Model

Photorealism

Non-photorealism (NPR)

[from A. Finkelstein, SIGGRAPH 05 Course Notes]
Non-Photorealistic Rendering cont.

• Imitate artistic and illustrative rendering styles
 – Pen-and-ink drawings (hatching etc.)
 – Painterly rendering
 – Watercolor

• Improve visual perception
 – Silhouette and feature lines
 – Emphasize important features
 – Hide unimportant details

• Goals
 – Explanation
 – Illustration
 – Storytelling
Non-Photorealistic Rendering cont.

• Technical and algorithmic aspects
 – How can we simulate artistic rendering styles?
 – Efficient extraction of feature lines etc.?
 – Can we adapt photorealistic rendering / illumination models to incorporate NPR? How?
 – Interactive rendering?