# **Rendering: Introduction**

Adam Celarek, Bernhard Kerbl and Torsten Möller

Research Division of Computer Graphics
Institute of Visual Computing & Human-Centered Technology
TU Wien und Uni Wien, Austria



## What this lecture is about



Why should you invest time in this course?



Source: MR\_Stein, flickr.com, CC BY-NC 2.0. Edges blurred.



Source: Gilles Tran, Wikipedia,
"Ray Tracing"



# Heroes of Rendering: James Kajiya



 Developer of the Rendering Equation and path tracing algorithm (1986)

PhD 1979, University of Utah

 Professor at California Institute of Technology (Caltech)

Currently at Microsoft



James Kajiya



# What is Path Tracing?



- Ray-tracing
  - Shoot rays into the scene, report on hit objects
  - Bounce into new directions, stop after some time
  - No claim to authenticity (but so shiny!)
- Path Tracing
  - Theoretically infinite bounces (high quality)
  - Approximates actual light transport (physically-based)
  - Many advanced SFX are just a side product!
- We will be developing an unbiased path tracer (?)





# ANNOUNCING NVIDIA RTX TECHNOLOGY









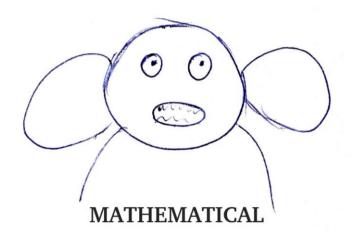
## Goals of this lecture



Understanding the nature of light and color

Modeling light transport for image synthesis

Generation of realistic (or artistic), high-quality images


Making the rendering process as effective as possible



# Prerequisites



- General interest in computer graphics
- Basic programming skills (C++)
- Fundamentals of higher mathematics:



- Interpreting moderately complex formulas
- Linear algebra (vectors, matrices, spaces)
- Probability & statistics essentials
- Calculus (integrals, derivatives)

If you need a recap or introduction to mathematical foundations:

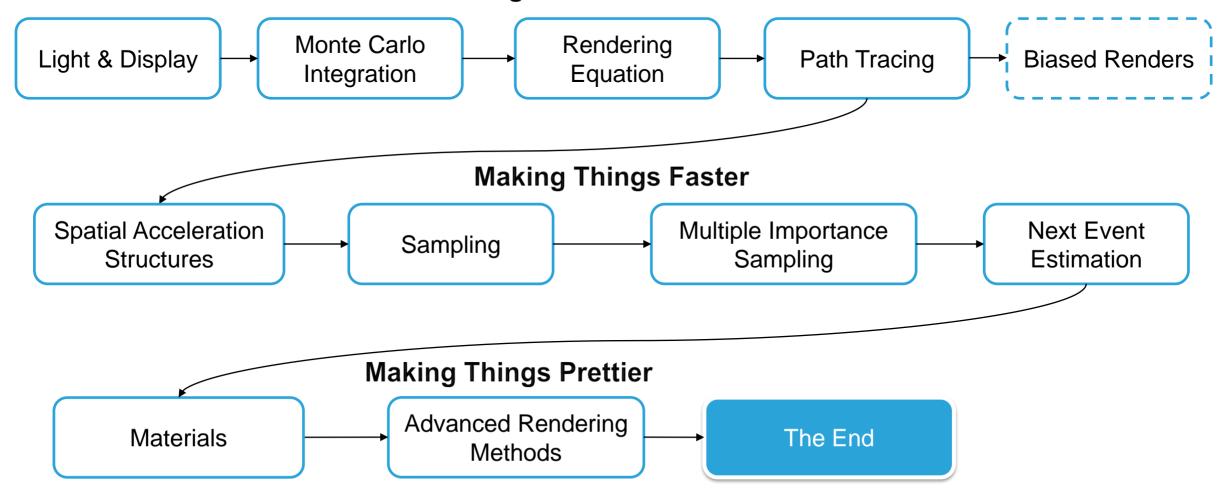
- Early chapters of the course book
- For a more didactic approach, consider *3blue1brown* series on linear algebra and calculus





### Course Structure




- Lecture (held by Adam Celarek, Bernhard Kerbl and Torsten Möller)
  - Two modi: 3 ECTS (Tuesdays only) and 6 ECTS (both days)
  - Will differ in terms of requirements for assignments and exam
  - Tuesday at 11:00, c.t. (obligatory for all participants)
  - Thursday at 11:05, s.t. (obligatory for Uni Wien, optional for TU Wien)
- Lab exercise
  - 3 assignments + 1 project, based on Nori renderer
  - Framework download and submissions via Git
  - Must be solved individually (no group work!)

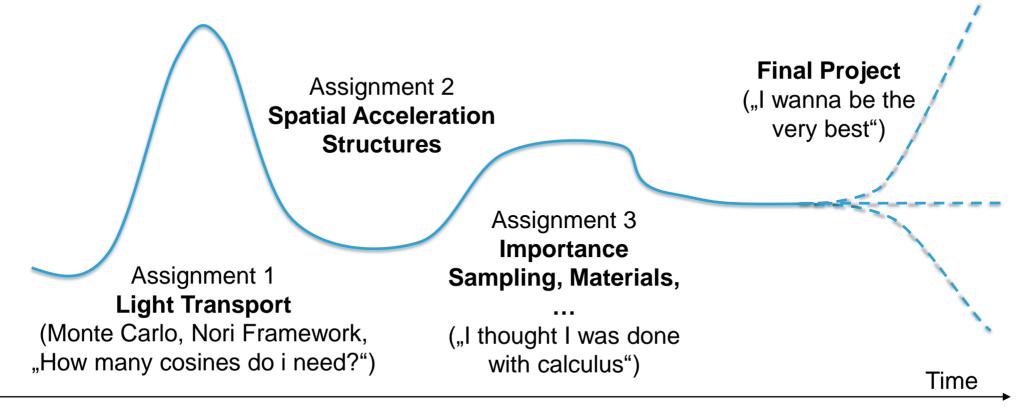


# Lecture Roadmap



#### **Background and Basics**






# Assignments and Learning Curve



Getting used to framework and most new concepts at beginning

Subjectively speaking, exercises become easier afterwards





## How to Succeed in this Course



Two paths to victory

- The efficient way
  - Do minimal required work, implement formulas we give you
  - Study well for final exam

- The effective way
  - Prod at formulas, follow derivations, implement bonus tasks
  - You can accumulate enough points to skip the exam!



# What to do for a passing grade



- Do the lab exercises
  - 120 points from core exercises
  - 1000+ points from bonus tasks
  - Requirements for passing: >15 pts per assignment

- Study for the final exam
  - Questions will be based on lecture topics
  - Held towards the end of the course



# **Grading Modi**



### 3 ECTs version:

- Final exam yields 80 points (45 minutes)
- Bonus lab exercises may earn enough points (175+) to skip exam!
- Lab + exam points:  $\geq 100 = 4, \geq 125 = 3, \geq 150 = 2, \geq 175 = 1$

### 6 ECTs version

- Final exam yields 150 points (90 minutes)
- Need at least 50 points on exam (no skipping!)
- Lab + exam points:  $\geq 150 = 4, \geq 187 = 3, \geq 225 = 2, \geq 260 = 1$



### Communication



Lecture slides: course homepage

Announcements: via TUWEL (make sure to enable notifications!)

Discussion topics for lecture contents: via TUWEL

Mistakes, issues, special actions: via direct mail

Submissions and Testing: submission.cg.tuwien.ac.at



## Communication



### **Good** ideas:

- Talking about lecture contents with us or your colleagues
- Asking questions on TUWEL ✓✓
- $\blacksquare$  Writing us mails regarding mistakes in the material  $\sqrt{\checkmark}$
- Sending us your code (√)

### **Bad** ideas:

- Sending mails before checking the course materials X
- Sharing code with your colleagues X X
- Posting code on TUWEL X X X



## Contact





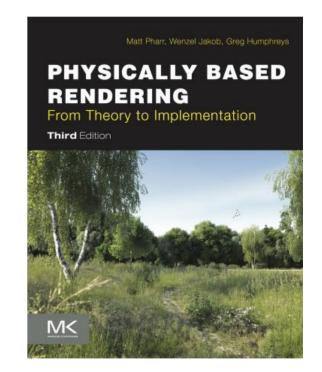
Adam Celarek
<last\_name> (at) cg.tuwien.ac.at
<a href="mailto:cg.tuwien.ac.at/staff/AdamCelarek.html">cg.tuwien.ac.at/staff/AdamCelarek.html</a>





Bernhard Kerbl
<last\_name> (at) cg.tuwien.ac.at
cg.tuwien.ac.at/staff/BernhardKerbl.html




Reinhard Russ
Tutor
e0605016 (at) student.tuwien.ac.at



### **Course Materials**



- Lecture Book (highly recommended)
  - Physically Based Rendering, latest edition
  - Available for free (!) on the book's homepage
- Course page
  - https://www.cg.tuwien.ac.at/courses/Rendering/VU
  - TUWEL and TISS course pages



- Lecture Slides
- Assignment Sheets (will be released during the semester)

