
Assignment 3: Importance Sampling
Deadline: 2021-06-02 23:59

In this assignment you will extend the Monte Carlo rendering system from the last
assignment with importance sampling of various functions and next event estimation.
In the above image, we see what these methods can do: the left scene is rendered with
uniform hemisphere sampling. In the center, we use cosine-weighted hemisphere sampling
(importance sampling). On the right, we use next event estimation to perform surface
sampling in a recursive path tracer. Images were rendered with the same number of
samples per pixel (32).

We have updated the assignments repository. Please merge all upstream changes
before starting to work.

git checkout master
git pull
git merge submission2 # just to be sure
git push # just in case something fails, make a backup
git remote add upstream git@submission.cg.tuwien.ac.at:rendering-2020/assignments.git
git pull upstream master
resolve any merge conflict, or just confirm the merge.
git push

We also provide a reference implementation for assignment 2, you can download it from
TUWEL.

1

1 Sample Warping (7 easy points, 9 bonus points)

Random numbers are often generated uniformly in the range between 0 and 1. We can
combine multiple such random numbers to sample cartesian domains uniformly, but
different distributions are needed, e.g., to get uniform distribution in a non-cartesian
domain (for recursive rendering, we need to sample the hemisphere for instance), or for
importance sampling techniques. This task can be fully solved in warp.cpp.

The process of changing an existing distribution is called warping. In this assignment, you
will start with easily obtainable, canonic random inputs, and convert them to new, useful
distributions. The input to all warping functions are two uniformly distributed ([0, 1))
random numbers, and the output are samples on the target domain. The input is always a
2D vector with values of two canonical random variables ξ1,ξ2.

In many cases, we may have an existing sample and need to obtain its PDF value for a
given sampling strategy, thus a method to produce the PDF from input samples is also
required. The input is always a sample x, 2D or 3D, for which a PDF value p(x) value
should be computed.

To visualize and check your implementations, we will be using the warptest executable,
which is part of the Nori framework. You should complete several of the warping functions
that it tests. For an introduction on how to use warptest and what each distribution is
supposed to do, please refer to the Assignment 3, Part 1 from the Nori home page (https:
//wjakob.github.io/nori/). Note that our scoring system is different, please find
it below. SquareToUniformHemisphere is already there, some of you were already cleverly
using it in the first assignment to do uniform hemisphere sampling.

squareToTent 2 points, test your basic Monte Carlo sampling knowledge, bonus

squareToUniformDisk 3 points, required

Sampling: Use the input canonic variables to generate samples (r,θ) in polar
coordinates where r ∈ [0,1) and θ ∈ [0,2π), such that they are uniformly distributed
when transformed to Cartesian coordinates (x, y). Return the current sample (x, y)
at the end of the function body.

PDF: The input is a 2D vector with a sample location in Cartesian coordinates
(x, y) on a square, with x, y ∈ [−1,1) . Return the proper value for the corresponding
result from the uniform distribution PDF p(x, y) on the disk. Note: For a uniform
distribution, the PDF is constant. Just make sure that the sample location is valid!

squareToUniformSphere 2 points, can use it to implement spherical lights, bonus

2

https://wjakob.github.io/nori/
https://wjakob.github.io/nori/

Figure 1: Reference solutions for uniformly distributed samples on the unit disk

squareToCosineHemisphere 4 points if inversion method, 1 point if Malley’s, required

Sampling: The input is a 2D vector sample that holds values of two canonical
random variables ξ1,ξ2. Use them to generate samples (θ,φ) on the unit hemisphere
such that they have a distribution proportional to cos(θ) (i.e., more samples the closer
we get to the pole of the hemisphere) and convert them to ω with the transformation
for spherical coordinates. Return the sample (x, y, z) at the end of the function body.

PDF: Input is a 3D vector with a sample location ω on the unit sphere in Cartesian
coordinates (x, y, z) with all values in range [0,1) and

√
x2 + y2 + z2 = 1 (z is up).

Return the appropriate result for the PDF value p(ω). Compute and return the
appropriate result for a PDF with distribution p(ω)∝ cos(θ).

squareToBeckmann 5 points, used for materials (needed in last assignment!), bonus

3

2 Importance Sampling (18 points, 20 bonus points)

Use cosine-weighted hemisphere samples for diffuse materials (8 easy points)
Use the cosine-weighted hemisphere sampling method, as described in the lecture. First
make sure that your direct lighting and path tracing integrators use the diffuse BSDF class
appropriately, then extend the diffuse BSDF with cosine-weighted hemisphere sampling.
Ideally, you can reuse your warping solutions from the first part of this assignment! The
BSDF should switch between using cosine-weighted and uniform hemisphere sampling,
depending on the value of the use_cosine flag provided by each object’s material (default:
false). Note that this affects both the sampling and PDF computation! Confirm for
yourself that cosine-weighted hemisphere sampling can reduce the noise in your scenes. To
test this, compare the output of the test scenes that end in uniform with the ones that end
in cosine. The latter use cosine-weighted hemisphere sampling and should give slightly
cleaner results.

Bonus: Multiple Importance Sampling for Direct Lighting (10 points) Implement
MIS between hemisphere sampling and light surface sampling using the balance heuristic
in your direct lighting integrator. Whether or not MIS is used should be parameterizable via
boolean mis_sampling (default false) in the test files. Choose between the two sampling
strategies with equal proability, generate the sample using the chosen method and compute
the sample’s probability with both methods. Make sure that you use the surface’s BSDF to
generate the hemisphere samples to benefit from cosine-weighted hemisphere sampling if
it is enabled by a material. Then use the equations from the lecture to compute the proper
MIS weight. Return the contribution that you would get with the chosen method, multiplied
by the MIS weight and a (simple!) compensation term for the choice you made when picking
one method over the other. You should use the balance heuristic, simpler heuristics will
count but not give full points. You can test MIS on the ajax-2lights_dl*.xml scenes,
where you should be able to observe the following: the small area light is better suited for
surface sampling, while the larger one is better with cosine-weighted hemisphere sampling,
but MIS can give you the best of both worlds. Feel free to also explore ideas that we didn’t
describe here (rays that miss are black by default, but you could use a sky colour or an
environment map). These things do not go unseen :)

Next Event Estimation (10 points, 10 bonus points) Implement next event estima-
tion (NEE) for your diffuse path tracer, according to the lecture slides. It should be active
depending on a boolen nee in the test file (default false). That is, on every bounce, you
create one light surface sample and try to connect to compute direct lighting with surface
sampling. Another ray is then sent out to retrieve indirect light in the next bounce. Make
sure that you use the BSDF to generate the indirect sample to benefit from cosine-weighted
hemisphere sampling of indirect light on materials that use it. If you implement NEE, be
careful not to erroneously count the emittance twice (i.e., first when doing the light surface

4

sampling and then when hitting a light source randomly). To get a correct image, the emit-
tant surface points that your ray hits should only be considered on the first intersection or
if the last material did not support hemisphere sampling (e.g., mirrors!). For all other light,
the illumination is computed via direct lighting, i.e., one bounce in the future (hence, "next
event"). For further details, please see the lecture slides. Just as a heads-up: implementing
NEE will dramatically improve the quality of your renderings! In combination with spatial
acceleration structures, you should now be able to render impressive scenes fast! To test
this, compare the output of the test scenes that end in uniform or cosine with the ones
that end in nee. The latter use next event estimation and should give significantly cleaner
results.

If you pay close attention, you may see that NEE is just a very special case of multiple
importance sampling! The way that NEE was described in the lecture was using the
0/1 heuristic of MIS: at the first hit, we choose hemisphere sampling for light sources,
afterwards we use light surface sampling. Hence, we can say that we use MIS weights for
both techniques that are either 0 or 1, depending on the recursion depth. Instead of this
0/1 heuristic, you may also implement NEE with the balance heuristic (10 bonus points).
This is a somewhat challenging exercise, not so much in code, but to get to the correct
solution mathematically and making sense of it. It is mostly for you to test your limits on
combining multiple complex concepts!

3 Further Bonus Points

Metropolis-Hastings for Cosine-Weighted Hemisphere Sampling (10 points) The
Metropolis-Hastings algorithm is an advanced and very essential achievement of com-
puter science. It actually enables you to importance-sample functions whose distribution
you don’t know! However, depending on the problem you pose it, it might not be the
most efficient method for getting a solution. For this task, familiarize yourself with the
Metropolis-Hastings algorithm and Metropolis Sampling (Wikipedia and PBR book, chap-
ter 13). Use the Metropolis-Hastings algorithm to perform cosine-weighted hemisphere
sampling without relying on a closed-form solution. How does it compare to your previous
solution for cosine-weighted hemisphere sampling?

Metropolis Light Transport (up to 1000 points) Metropolis Sampling is the basis of
the Metropolis Light Transport algorithm. If you have too much time on your hands
and want to go down as a hero in the history of this lecture, feel free to attempt an
implementation of it. Chapter 16 of the PBR book contains some introductory information,
but you will have to spend additional effort researching the required backgrounds. For
something special like this you may take your time until the end of the semester (or even
beyond). Contact us for details if you need further guidance or suggestions. Good luck!

5

Submission format

Put a short PDF or text file called submission<X> into your git root directory and
state all the points that you think you should get. This does not need to be
long. Also mention the code files, where you implemented something if it is not
obvious.

To store or submit your code, please use our own, institute-hosted submission Gitlab
https://submission.cg.tuwien.ac.at. You will receive a mail with your account and
assignment repository as soon as they are ready. The master branch is for development
only. You should push there while you are experimenting with the assignment and don’t
want to lose your work. Once your solution works and you believe it is ready to be graded,
please use the branch submission<X> where <X> is the assignment number. E.g., in order
to submit your solution for the first assignment, push to submission1.

If you push to a submission branch, the server will trigger automatic compilation and
some testing for your code. You can track the state of new submissions being processed
on the GitLab page for your repository under "CI/CD > Pipelines". If a stage fails, click
on it to receive additional output and system information from the executing server. If
everything worked, you will shortly find a report with your test results in the "CI/CD"
pipeline section, when checking the artifacts of the "report" stage. You can submit multiple
times until the deadline, but don’t clog the system by, e.g., using the submission server for
debugging. The last submission that was pushed before the deadline counts, regardless
of the results from automatic testing. They are only meant for your convenience and to
provide some automated feedback.

Please make sure to NOT add unnecessary files (project folders, temporary com-
piler results), as your application will be created from your code and CMake
setup only. Examples of files that are usually relevant:

• changed or added CMakeLists.txt files

• changed or added code files (.h, .cpp)

• changed or added test cases if you want to show off advanced solutions

Make sure to keep the directory structure in your submitted archive the same as in the
framework.

6

https://submission.cg.tuwien.ac.at

Words of wisdom

• If you are having trouble with performance, consider changing the resolution and/or
number of samples for your test cases.

• The warp tests only check if the samples you generate match the corresponding PDFs
you define. Best start with the PDFs and then try to match them with sampling.

• Hemisphere sampling, next event estimation and MIS are all methods for integrating
the same integral. Given enough samples, they all should converge to the same
result.

• If you have questions, please use TUWEL, but refrain from posting critical code
sections.

• You are encouraged to write your own test cases to experiment with challenging
scenarios.

• Tracing rays is expensive. You don’t want to render high resolution images or complex
scenes for testing. You may also want to avoid the Debug mode if you don’t actually
need it (use a release with debug info build!).

• To reduce the waiting time, Nori runs multi-threaded by default. To make debugging
easier, you will want to set the number of threads to 1. To do so, simply execute Nori
with the additional arguments -t 1.

7

	Sample Warping (7 easy points, 9 bonus points)
	Importance Sampling (18 points, 20 bonus points)
	Further Bonus Points

