
Assignment 1: Monte Carlo Integration
and Path Tracing

Deadline: 2021-04-18 23:59

In this assignment you will implement all of the crucial parts to get a Monte Carlo based
rendering system. The result will be 1. an ambient occlusion integrator, 2. a direct light
renderer, and 3. a simple path tracer. The assignments build up upon each other, be sure
to test everything before continuing. For most points in this assignment you can ignore the
material BRDF and just assume white diffuse materials (ρ = {1,1,1}).

We have updated the assignments repository. Please merge all upstream changes
before starting to work.

git checkout master
git pull
git merge submission1 # just to be sure
git push # just in case something fails, make a backup
git remote add upstream git@submission.cg.tuwien.ac.at:rendering-2020/assignments.git
git pull upstream master
resolve any merge conflict, or just confirm the merge.
git push

Important: As you have seen in assignment 0, you have to register a name for your
integrators (and any other additions) with Nori framework. Our test system expects
pre-defined names and attributes when invoking Nori via your solution. Please study the
given scene xml files and choose the correct names for registration. It is recommended that
you run the test files for yourself before submission.

1

1 Completing Nori’s MC Intestines

Nori is an almost complete Monte Carlo integrator. But we have left out some crucial parts
for you to complete. By doing so, you’ll get a short tour of the main MC machinery.

The main loop structure of our renderer looks something like this:

/* For each pixel and pixel sample */
for (y=0; y<height; ++y) {

for (x=0; x<width; ++x) {
for (i=0; i<N; ++i) { // N = Target sample count per pixel

ray = compute_random_camera_ray_for_pixel(x, y)
value = Li(ray, other, stuff)
pixel[y][x] += value

}
pixel[y][x] /= N

}
}

Obviously, the code will be slightly different longer in practise due to parallelisation,
filtering (something we will learn later) and general architectural design. Look into the
code, try to understand how things are done and complete the following functions (all
changes are a single line):

main.cpp, renderBlock() Iterate over all required samples (target count stored in sampler)

block.cpp, ImageBlock::put(Point2f, Color3f) Accumulate samples and sample count

block.cpp, ImageBlock::toBitmap() Divide RGB color by accumulated sample count
(look at Color4f, if the count is in member .w, there is a function you can use)

For the normals integrator from last time, these changes shouldn’t make a difference.
However, for the techniques that you will implement in this assignment, they provide the
basis for proper MC integration to resolve the noise in your images. Beyond implementing
them, make sure that you understand how they interconnect and how Nori converts ray
samples into output pixel colors.

As mentioned during the lecture, beyond the main loop you do not need another sample
generating loop inside the integrators. If you were to do that in a path tracer, there would
be the problem of an ever-exploding number of samples (curse of dimensionality).

2

2 Ambient occlusion (3 easy points)

Implement ambient occlusion! Its rendering equation is

L i(x)=
∫
Ω

1
π

V(x, x+αω)cos(θ)dω, (1)

where L i is the brightness, x a position on the surface, V the visibility function, α a
constant, and θ the angle between ω and the surface normal at x. The visibility function
is 1 or 0, depending on whether the ray from x to x+αω reaches its destination without
interference. This is also commonly referred to as a shadow ray. α should be configurable
via XML and default to scene->getBoundingBox().getExtents().norm() if no value is
provided (experiment with it!). 1

π
represents a simple white diffuse BRDF, as we explained

in the lecture about light when we talked about the furnace test.

For integration, you should sample the hemisphere surface around point x uniformly.
Since Nori’s main loop already takes care of computing the mean for MC integration,
the function should return one sample of the integrand, divided p(x). The proper value
for p(x) for uniform sampling was discussed in the lecture. In addition, you will need
a function that can turn a uniformly random 2D value between 0 and 1 into a uni-
form hemisphere sample ω. This transformation is called warping. You can draw the
2D random values from the sampler. Apply the formulas from the lecture or look at
Vector3f Warp::squareToUniformHemisphere(const Point2f &sample) inside warp.cpp
and warp.h to generateω. Make sure to bringω to world space before tracing (.shFrame.toWorld).

Pay attention to the individual mathematical factors (including those inside p(x)), some of
them cancel out and don’t need to be computed at all!

Altogether, this should be about 20 lines in a new integrator_ao.cpp file (not counting
boiler plate code). Compare results with different sample counts (16, 64, 256...), do you see
an improvement? If not, go back to Completing Nori’s MC Intestines!

3 Direct lighting (up to 9 Points)

Check the slides about light and the recaps in Monte Carlo integration and Path Tracing
for the correct integrals. There are two possibilities on how to implement direct lighting:
hemisphere sampling and light source sampling. Hemisphere sampling works well only for
very very large lights (sky), while light source sampling works especially well with small
lights. To make sure that both methods can be used, our scenes will contain area lights.
If we had point or directional lights, hemisphere sampling would not work and we could
only use light source sampling (can you guess why?). All these sampling methods can be
combined using MIS (you will learn about that later).

3

You should start with uniform hemisphere sampling (it’s very similar to ambient occlusion
in terms of code structure). Once hemisphere sampling works, you can continue with
light source sampling and check whether the two methods converge to the same image
when using a high number of samples. If they don’t, you have a bug, since both rendering
methods are based on the same physical concepts and should eventually produce the same
image (although one might be noisier than the other with low sample counts). You may
also try our provided unit tests locally (maybe you have to edit the python script to correct
the scene file lookup path).

3.1 Hemisphere sampling (3 easy points)

You should base your code on integrator_ao.cpp and implement it in
integrator_direct_lighting.cpp.

Task 1 Implement the emitter interface (create either a parallelogram_emitter or
mesh_emitter class) and the supporting machinery. Emitters need to read their brightness
(radiance) and colour from the scene file and store it (minimum requirements for an
emitter). A name and debug info might also be good. If you don’t plan to implement
light source sampling, you can use a dummy implementation for Emitter::pdf() and
Emitter::sample().

Task 2 Implement the integrator. First, you need to check whether the camera ray
directly hits a light source (emitter). If so, return its colour and be done. This is not
completely correct, but you can ignore direct illumination of light sources for now. If you hit
a regular surface instead, cast a random ray according to uniform hemisphere sampling,
similar to ambient occlusion (no maximum ray length this time!). If the closest intersected
object is a light, compute its contribution using the equations from the lecture, otherwise
return zero (black). This should only require a small edit from the ao integrator.

3.2 Light surface sampling (up to 6 points)

Light surface sampling is important for performant path tracers (it’s referenced as "next
event estimation" or "direct light sampling" there). In contrast to hemisphere sampling, you
are not simply shooting rays around the hemisphere and hope to find light. Instead, you
try to connect hit points directly to light sources and check if that connection is possible. If
you implement it, you should see improvements immediately. You will need to sample area
light surfaces, i.e., you need a function to pick uniformly random points on the surface of
each light. There are 2 options, of which you should choose one for your implementation:

4

1. Parallelogram lights (3 points) Parallelograms are very easy to sample uniformly,
just use a linear combination k1a+k2b of its side vectors a,b with coefficients k1,k2
where 0 ≤ k1,k2 < 1. Obviously, this option will restrict you to using rather basic
light source shapes in your scene.

2. Triangle mesh lights (6 points) This can give very cool results, i.e., imagine a
glowing mesh. Mesh sampling is not that hard either: Select the triangle according
to its surface area (larger triangles are more often selected). The implementation in
nori/dpdf.h will be useful here. Once you have selected a triangle, sample a point
on it (http://mathworld.wolfram.com/TrianglePointPicking.html).

Be careful when you reuse random numbers! Example: 2 triangles, s = rand(0,
1) < 0.5 would give you the first triangle. If you want to reuse s for sampling the
position (after using it for discretely sampling the triangle), clearly you will only ever
sample the first half of the first and the second half of the second triangle. In order
to avoid artefacts, s needs to be shifted and scaled! DiscretePDF::sampleReuse is
precisely for that. Later on, you could use it for sampling the light as well (it’s enough
to query one random light per sample if you normalise properly). But if you are
uncertain, you can always just draw additional fresh random numbers from sampler.

You can get 3 points for parallelogram or 6 points for triangle mesh lights, but not both.

Task 3 Implement sampling. The parallelogram, mesh, or emitter classes would be
good places (your choice). You need to implement something like samplePosition (taking
random numbers, returning a position and its surface normal) and pdf (taking a position
and returning the sample probability density).

Task 4 To pick one of the available light sources for sampling, you will need a list of
emitters in the scene. Hook into Scene::addChild. In our assignments, surface emitters
are always children of meshes. The switch emitter case is for point lights or other emitters
without physical surface, you can ignore it for now. Additionally, the emitter object needs
a reference to the geometry (mesh or parallelogram, otherwise the sampling code has no
data). Don’t be afraid to add stuff to headers or create new ones, it’s your design now.

Task 5 Implement the direct lighting integrator for light source sampling. Pick a light,
either uniformly or according to the emitted light (importance sampling), and then sample a
point on its surface. Once you have a point, cast a shadow ray and compute the contribution,
if any (f(x) divided by joint pdf). If there are multiple lights, make sure to compensate
for the fact that you chose a particular one! Add a boolean property to allow switching
between hemisphere sampling and surface sampling.

5

http://mathworld.wolfram.com/TrianglePointPicking.html

4 Simple Path Tracing (15 Points + 15 Bonus)

4.1 Implement the recursive path tracing algorithm (8 points)

Create a new integrator and call it path_tracer_recursive(.cpp). Start with a copy of
the direct lighting integrator. It might pay off to keep your code clean so you can easily
make small adjustments when we improve it in future assignments.

Task 1, Start (5 easy points) Start with the pseudocode from the path tracing lecture
slides. Since Nori’s main loop has no depth parameter, let Li be a stub that calls an
additional, recursive function that can keep track of the current depth. For the first task,
you only have to implement a fixed depth recursion. You can choose to use a constant in
code, or a parameter in the scene files, but the default if no parameters are given must
be a depth of 3. During development, you should experiment with this number and can
observe how the image becomes more realistic as you increase the depth.

Task 2, Russian Roulette (1 easy and 2 normal points) Implement Russian Roulette,
with a minimum guaranteed depth of 4. Whether or not Russian roulette is used must be
parameterisasble via boolean rr from the scene file. You can start with a version that uses
a fixed continuation probability in each bounce (1 Point). Check the slides for details.

However, the proper way to do it is to keep track of the throughput. With every bounce, the
importance emitted from the camera is attenuated, and the probability for continuation
should become lower. You should keep track of this throughput in a Color3f vector, and use
its largest coefficient for Russian Roulette (2 Points). Check the slides for details.

4.2 Implement and use the Diffuse BRDF / BSDF (2 points)

Encapsulate uniform hemisphere sampling of diffuse materials in diffuse.cpp. The test
cases already use it, so you can store and use its albedo to generate colour! These 2 points
are only valid in conjunction with a working path tracer. Check slides for details.

4.3 Implement path tracing in a loop (5 points)

Every recursive algorithm can be written in a loop as well. Sometimes a stack is needed, but
in the path tracer that is not necessary. The loop form is much friendlier to the processor,
and you can avoid stack overflows (which could happen with very deep recursions).

6

The code should be pretty similar. You already keep track of the throughput, if you
implemented Russian roulette. Now you should get roughly something like this:

Li(Scene scene, Ray ray, int depth) {
Color value = 0;
Color throughput = 1;
// .. some other stuff

while (true) {
// stuff
throughput *= "something <= 1"

// stuff
value += throughput * something

if (something)
break;

}
return value;

}

You might break, or add things to value in more than one place, or in a different order. This
is just the basic idea.

4.4 Implement a higher-dimensional path tracing effect (15 bonus points)

Implement either motion blur or depth-of-field effects. For motion blur, you will need to
give something in your scene the ability to move (scene objects, camera). For each path,
you will need an additional uniformly random time variable t and consider it when you
perform intersection with your scene. To implement depth-of-field, you will need two
additional uniformly random u,v variables for each path and consider them in the setup of
your camera ray. You can gain 15 bonus points for either effect, but not for both.

Submission format

Put a short PDF or text file called submission<X> into your git root directory and
state all the points that you think you should get. This does not need to be
long. Also mention the code files, where you implemented something if it is not
obvious.

7

To store or submit your code, please use our own, institute-hosted submission Gitlab
https://submission.cg.tuwien.ac.at. You will receive a mail with your account and
assignment repository as soon as they are ready. The master branch is for development
only. You should push there while you are experimenting with the assignment and don’t
want to lose your work. Once your solution works and you believe it is ready to be graded,
please use the branch submission<X> where <X> is the assignment number. E.g., in order
to submit your solution for this assignment, push to submission1.

If you push to a submission branch, the server will trigger automatic compilation and
some testing for your code. You can track the state of new submissions being processed
on the GitLab page for your repository under "CI/CD > Pipelines". If a stage fails, click
on it to receive additional output and system information from the executing server. If
everything worked, you will shortly find a report with your test results in the "CI/CD"
pipeline section, when checking the artifacts of the "report" stage. You can submit multiple
times until the deadline, but don’t clog the system by, e.g., using the submission server for
debugging. The last submission that was pushed before the deadline counts, regardless
of the results from automatic testing. They are only meant for your convenience and to
provide some automated feedback.

Please make sure to NOT add unnecessary files (project folders, temporary com-
piler results), as your application will be created from your code and CMake
setup only. Examples of files that are usually relevant:

• changed or added CMakeLists.txt files

• changed or added code files (.h, .cpp)

• changed or added test cases if you want to show off advanced solutions

Make sure to keep the directory structure in your submitted archive the same as in the
framework.

Words of wisdom

• Remember that you don’t need all points to get the best grade. The workload of 3
ECTS counts on taking the exam, which gives a lot of points.

• Nori provides you with a Sampler that is passed in to the functions that produce the
integrator input. Use this class to draw values from a canonic random variable.

• Be careful of so-called "self-intersections". These happen when you immediately hit
the same surface that you started your ray from, due to inaccuracies in floating point

8

https://submission.cg.tuwien.ac.at

computations. You can avoid these by offsetting rays in the normal direction of the
surface with a small ε. Use Epsilon defined in nori/common.h.

• Hemisphere sampling and light source sampling are two methods to compute the
same integral. Therefore, given enough samples, they both should converge to the
same result.

• The framework is using Eigen under the hood for vectors and matrices etc. Be careful
when using auto in your code (Read here why).

• Please use TUWEL for questions, but refrain from posting critical code sections.

• You are encouraged to write new test cases to experiment with challenging scenarios.

• Tracing rays is expensive. You don’t want to render high resolution images or complex
scenes for testing. You may also want to avoid the Debug mode if you don’t actually
need it (use a release with debug info build!).

• To reduce the waiting time, Nori runs multi-threaded by default. To make debugging
easier, you will want to set the number of threads to 1. To do so, simply execute Nori
with the additional arguments -t 1.

9

https://eigen.tuxfamily.org/dox/TopicPitfalls.html

	Completing Nori's MC Intestines
	Ambient occlusion (3 easy points)
	Direct lighting (up to 9 Points)
	Hemisphere sampling (3 easy points)
	Light surface sampling (up to 6 points)

	Simple Path Tracing (15 Points + 15 Bonus)
	Implement the recursive path tracing algorithm (8 points)
	Implement and use the Diffuse BRDF / BSDF (2 points)
	Implement path tracing in a loop (5 points)
	Implement a higher-dimensional path tracing effect (15 bonus points)

