Rendering: Introduction

Adam Celarek and Bernhard Kerbl

Research Division of Computer Graphics Institute of Visual Computing & Human-Centered Technology TU Wien, Austria

Why should you invest time in this course?

Source: MR_Stein, flickr.com, CC BY-NC 2.0. Edges blurred.

Source: Gilles Tran, Wikipedia, "Ray Tracing"

Heroes of Rendering: James Kajiya

 Developer of the Rendering Equation and path tracing algorithm (1986)

PhD 1979, University of Utah

Professor at California Institute of Technology (Caltech)

Currently at Microsoft

James Kajiya

Ray-tracing

- Shoot rays into the scene, report on hit objects
- Bounce into new directions, stop after some time
- No claim to authenticity (but so shiny!)
- Path Tracing
 - Theoretically infinite bounces (high quality)
 - Approximates actual light transport (physically-based)
 - Many advanced SFX are just a side product!

We will be developing an unbiased path tracer (?)

Spring, © Blender Foundation | cloud.blender.org/spring

NVIDIA, flickr.com, CC BY-NC-ND 2.0

ANNOUNCING NVIDIA RTX TECHNOLOGY

Understanding the nature of light and color

Modeling light transport for image synthesis

Generation of realistic (or artistic), high-quality images

Making the rendering process as effective as possible

Prerequisites

- General interest in computer graphics
- Basic programming skills (C++)
- Fundamentals of higher mathematics:

- Interpreting moderately complex formulas
- Linear algebra (vectors, matrices, spaces)
- Probability & statistics essentials
- Calculus (integrals, derivatives)

If you need a recap or introduction to mathematical foundations:

- Early chapters of the course book
- For a more didactic approach, consider *3blue1brown* series on linear algebra and calculus

- Lecture (held by Adam Celarek & Bernhard Kerbl)
 - Wednesday at 16:00, s.t.
 - COVID-19: Course is online! Time slot used for Q&A!

- Lab exercise
 - 4 programming exercises, based on <u>Nori</u> renderer
 - Framework download and submissions via Git
 - Must be solved individually (no group work!)

Two paths to victory

- The efficient way
 - Do minimal required work, implement formulas we give you
 - Study well for final exam
- The effective way
 - Prod at formulas, follow derivations, implement bonus tasks
 - You can accumulate enough points to skip the exam!

Do the lab exercises

- Requirements for passing: >15 pts per assignment
- You can obtain extra points for putting in additional effort
- Excellent solutions may earn enough points (160+) to skip exam!

Study for the final exam (80 pts)

- Questions will be based on lecture topics
- Held towards the end of the course

Grading: $\geq 100 = 4, \geq 120 = 3, \geq 140 = 2, \geq 160 = 1$

Lecture slides: course homepage

Official announcements: via TUWEL, TISS

Discussion topics for lecture contents: via TUWEL

Mistakes, issues, special actions: via direct mail

Submissions and Testing: submission.cg.tuwien.ac.at

Good ideas:

- Talking about lecture contents with us or your colleagues
- Asking questions on TUWEL $\checkmark \checkmark$
- Writing us mails regarding mistakes in the material $\sqrt{\sqrt{\sqrt{3}}}$
- Sending us your code (√)

Bad ideas:

- Sending mails before checking the course materials X
- Sharing code with your colleagues X X
- Posting code on TUWEL X X X

Contact

Adam Celarek

<last_name> (at) cg.tuwien.ac.at cg.tuwien.ac.at/staff/AdamCelarek.html

Hamed Jafari

<firstname.lastname>.s@gmail.com

Bernhard Kerbl

<last_name> (at) cg.tuwien.ac.at cg.tuwien.ac.at/staff/BernhardKerbl.html

Course Materials

Lecture Book (highly recommended)

- Physically Based Rendering, 3rd edition
- Available for free on the book's homepage

Course page

- <u>https://www.cg.tuwien.ac.at/courses/Rendering/VU</u>
- TUWEL and TISS course pages

Matt Pharr, Wenzel Jakob, Greg Humphreys

PHYSICALLY BASED Rendering

From Theory to Implementation

Third Edition

Lecture Slides

Assignment Sheets (will be released during the semester)

Eurographics: Student Volunteers Wanted!

EUROGRAPHICS 2021

One of Europe's highest-rated conferences on graphics

Apply as volunteer and meet renowned computer graphics experts!

