Rendering: Multiple Importance Sampling

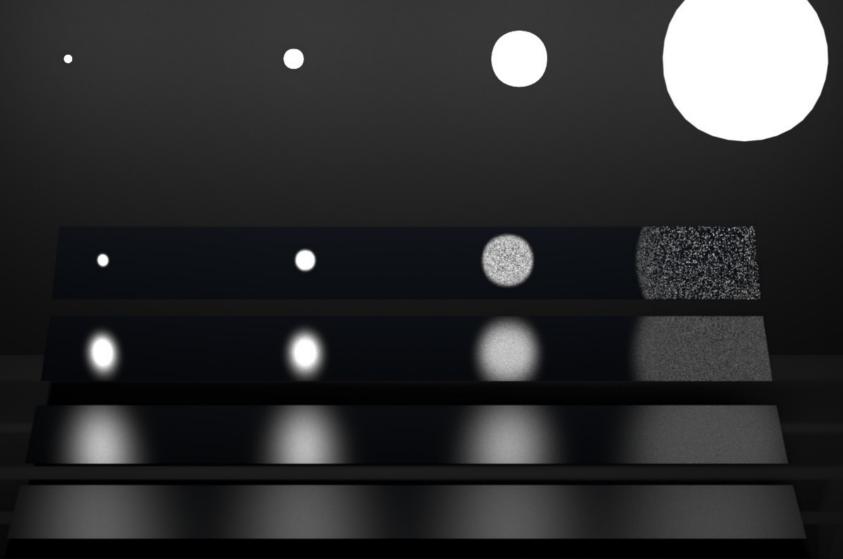
Adam Celarek

Research Division of Computer Graphics
Institute of Visual Computing & Human-Centered Technology
TU Wien, Austria

Sampling the light sources (128 samples) glossy material rough material

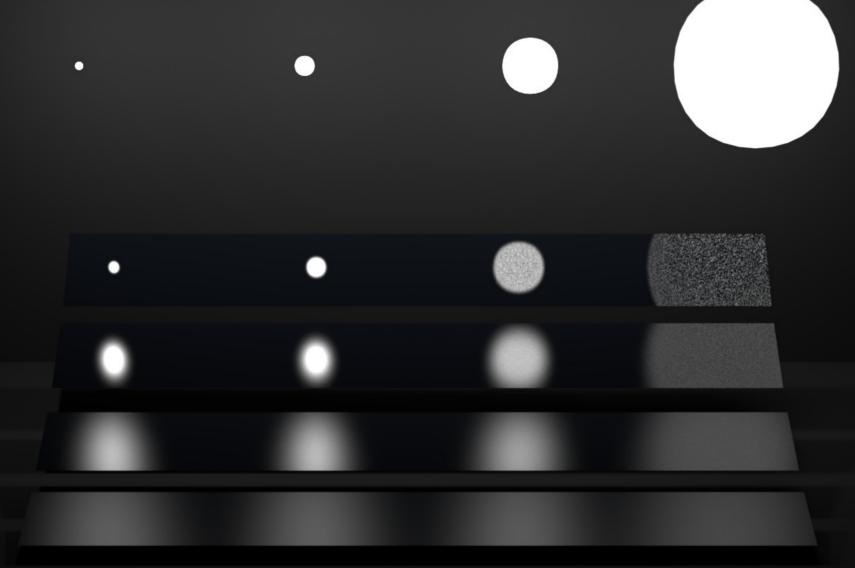
source: modified assignment scene rendered with Nori 3 based on the MIS test scene by Eric Veach, modeled after a file by Steve Marschnei

Sampling the light sources (4096 samples)



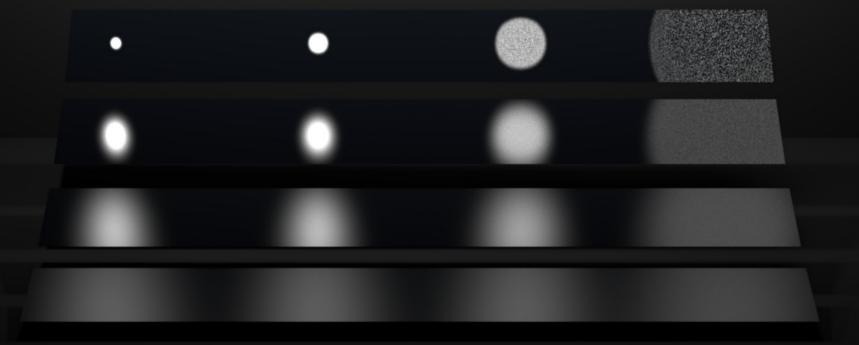
source: modified assignment scene rendered with Nori 4 based on the MIS test scene by Eric Veach, modeled after a file by Steve Marschner

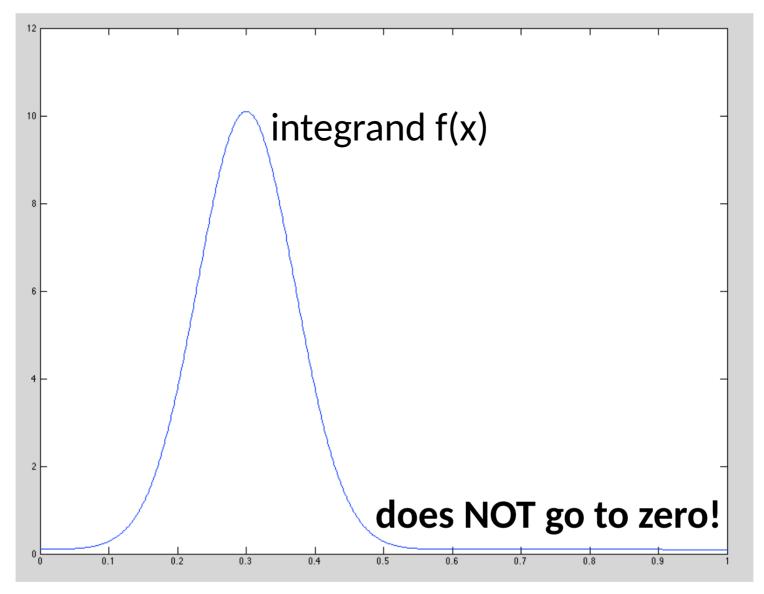
Sampling the light sources (16384 samples)

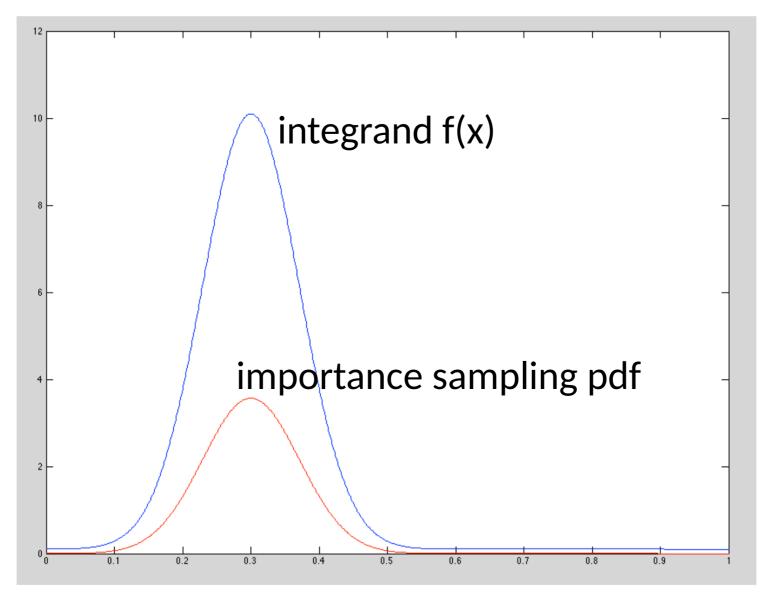


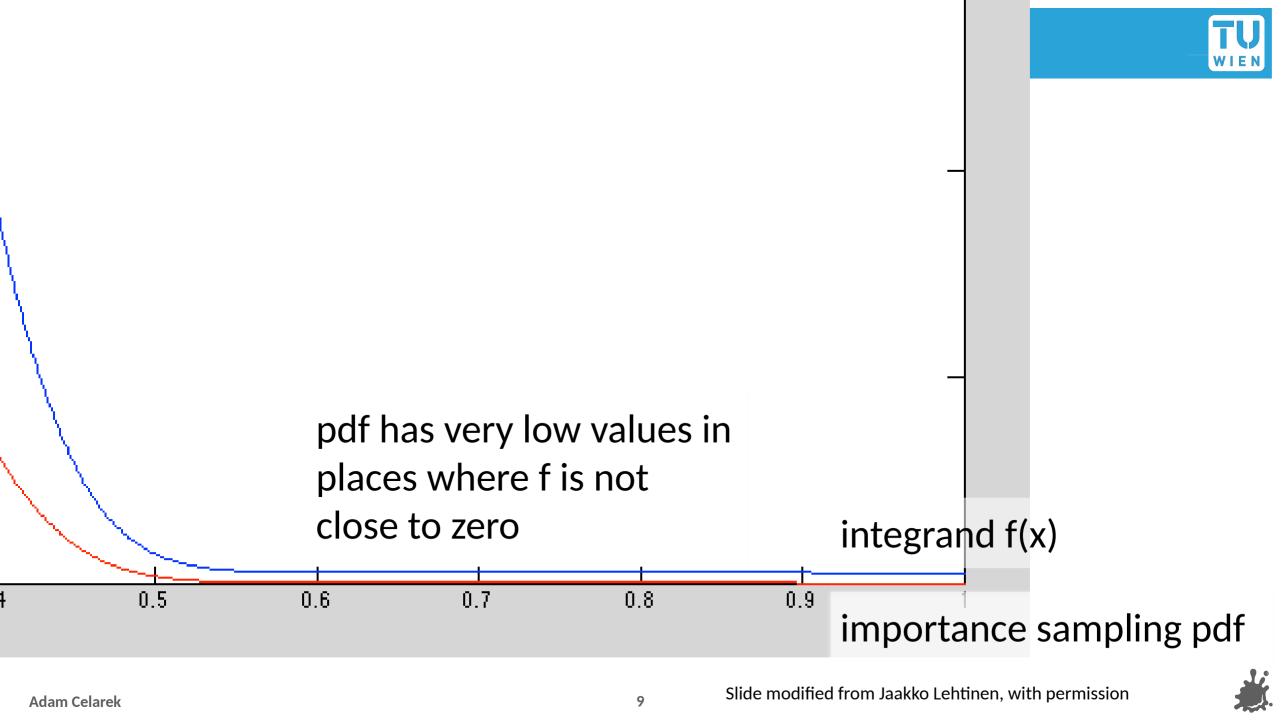
Bad Sampling

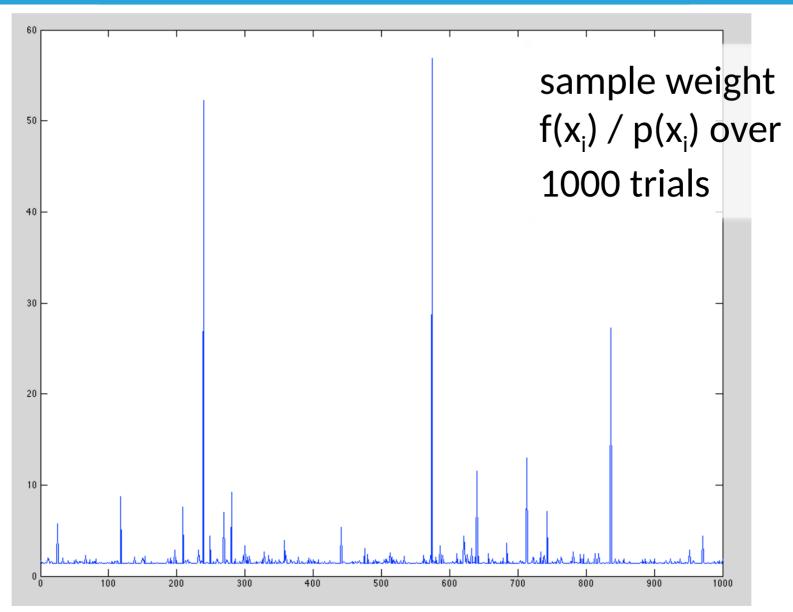
Clearly, we have a problem here.
 The sampling strategy has a hard time with the situation.









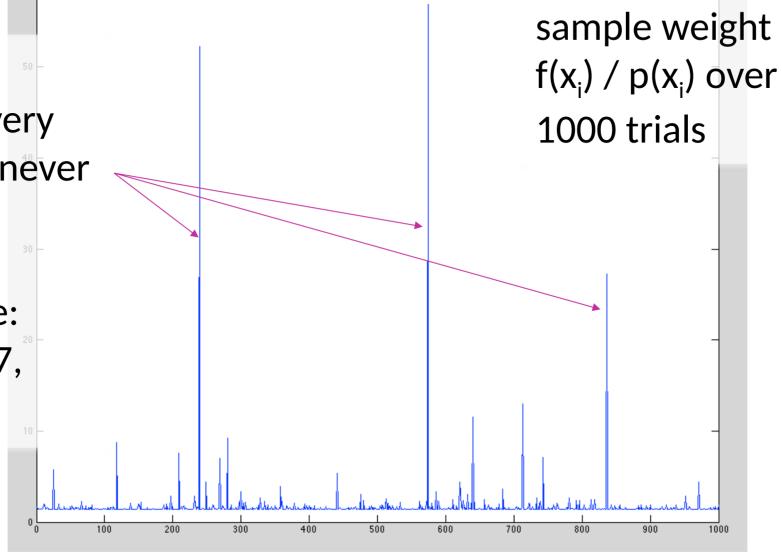


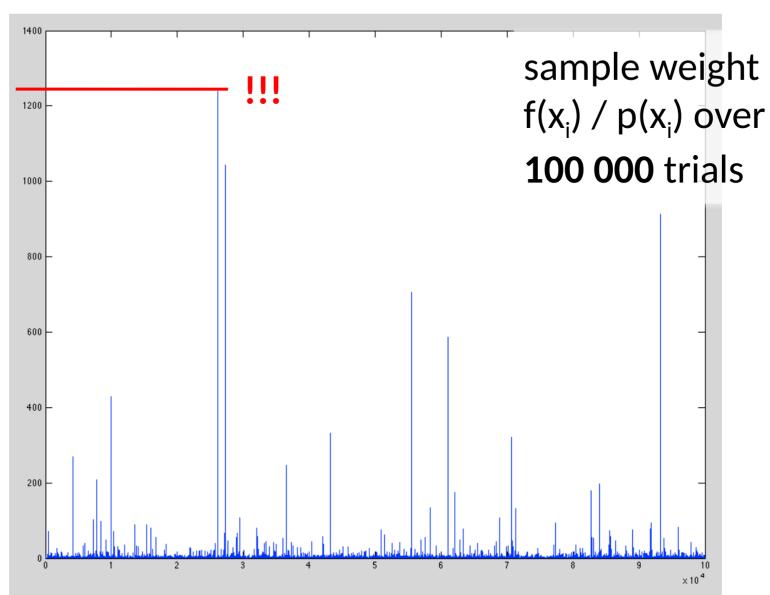
spikes in cases
where p(x) is very
low, yet f(x) is never
very low

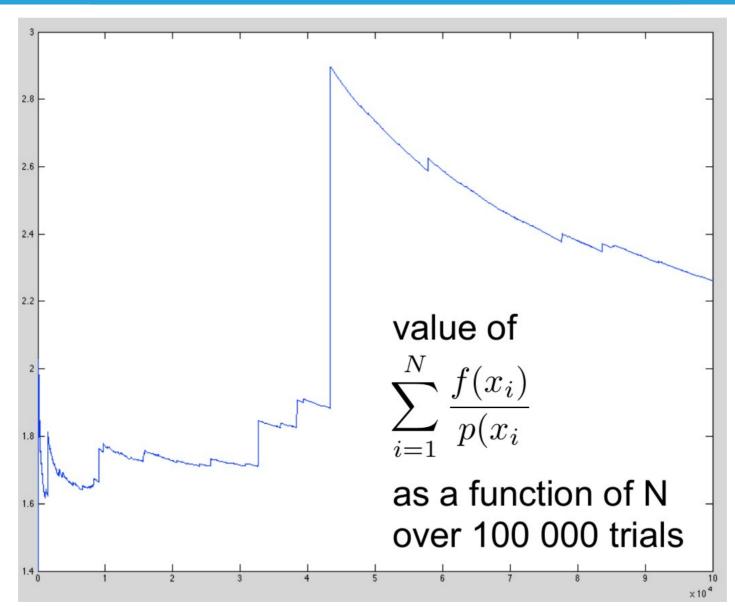
in our example:

$$p(0.5) = 0.0027,$$

$$p(0.9) = 10^{-31}!$$



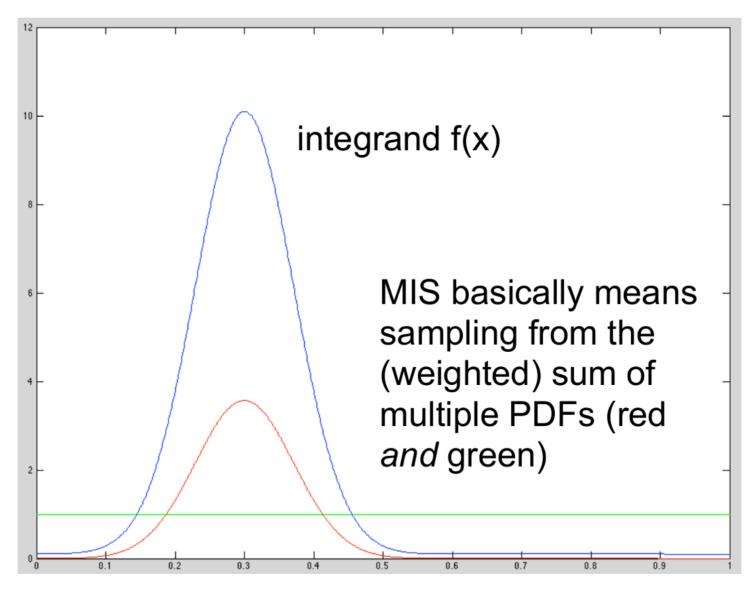




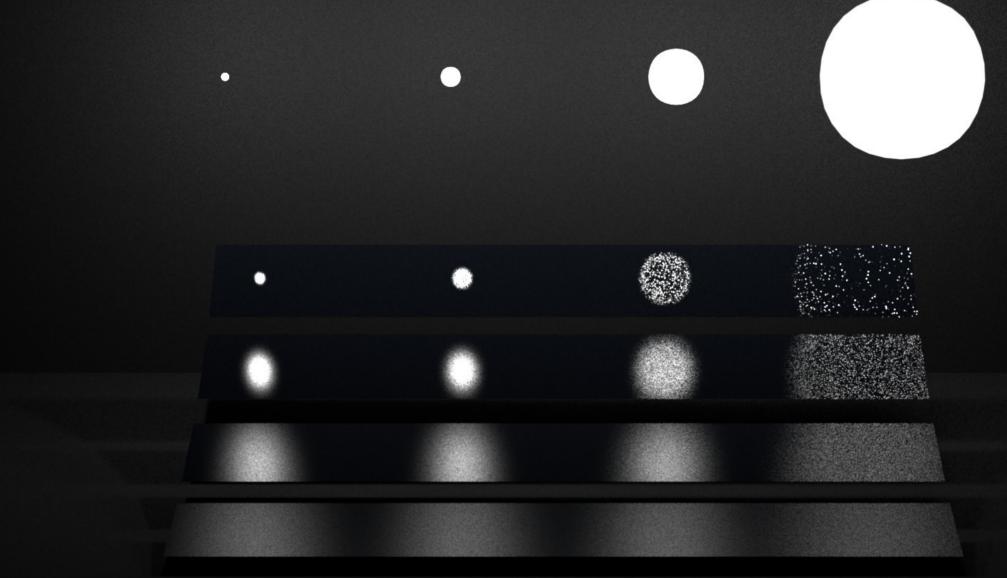
Bad sampling

When f(x) is large and p(x) small.

Next: MIS



Sampling the light sources (128 samples)



source: modified assignment scene rendered with Nori 16 based on the MIS test scene by Eric Veach, modeled after a file by Steve Marschnei

Sampling the material (128 samples)

source: modified assignment scene rendered with Nori 17 based on the MIS test scene by Eric Veach, modeled after a file by Steve Marschnei

Multiple Importance Sampling (128 samples)

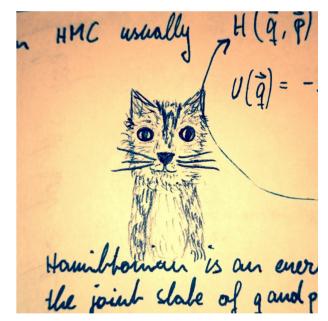
source: modified assignment scene rendered with Nori 18 based on the MIS test scene by Eric Veach, modeled after a file by Steve Marschner

- Let's start with plain Monte Carlo (what we already know)
- We have n estimators F_i and n_i samples each

$$F_i = \frac{1}{n_i} \sum_{j=0}^{n_i} \frac{f(X_j)}{p(X_j)}$$

The expectation of all estimators is the integral

$$E[F_i] = \int_{\Omega} f(x) \, \mathrm{d}x$$



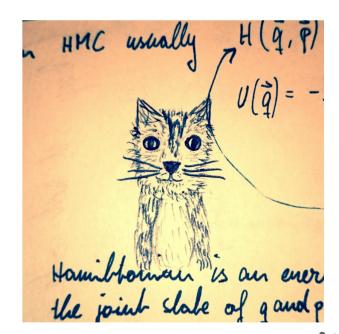
Adam Celarek 19

Now, when we take the average, of these estimators

$$F = \frac{1}{n} \sum_{i=0}^{n} F_i$$

we again get an unbiased estimator

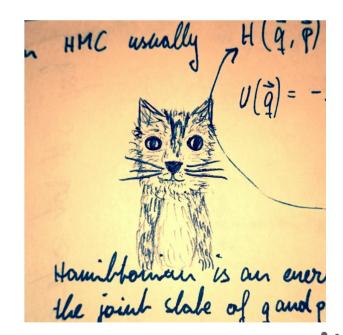
$$E[F] = \frac{1}{n} \sum_{i=0}^{n} E[F_i] = \int_{\Omega} f(x) dx$$



Instead of a simple average, we can also take a weighted sum

$$E[F] = \sum_{i=0}^{n} w_i E[F_i] = \sum_{i=0}^{n} \frac{1}{n_i} \sum_{j=0}^{n_i} w_i E\left[\frac{f(X_{i,j})}{p(X_{i,j})}\right] = \int_{\Omega} f(x) dx \text{ with } \sum w_i = 1$$

and move the weight into the estimators Fi

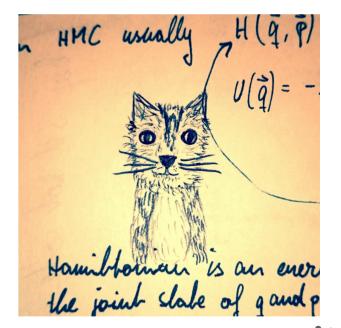


And the weight can even depend on the sample.

$$E[F] = \sum_{i=0}^{n} \frac{1}{n_i} \sum_{i=0}^{n_i} E\left[w_i(X_{i,j}) \frac{f(X_{i,j})}{p(X_{i,j})}\right] = \int_{\Omega} f(x) dx \text{ with } \sum w_i(X_{i,j}) = 1$$

Think about it that way:

We have our n strategies, but we draw only one sample each. By pure luck all samples $X_{i,0}$ are the same. In that case our weighting is clearly valid. But it's also valid when the samples are different. And this is the gist of MIS.



Adam Celarek 22

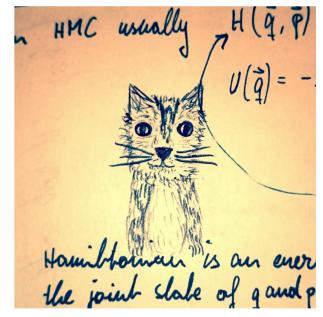
Multi-sample estimator is given by

$$F = \sum_{i=1}^{n} \frac{1}{n_i} \sum_{j=1}^{n_i} w_i(X_{i,j}) \frac{f(X_{i,j})}{p_i(X_{i,j})}$$

It's unbiased when

(W1)
$$\sum_{i=1}^{n} w_i(x) = 1$$
 whenever $f(x) \neq 0$, and

(W2)
$$w_i(x) = 0$$
 whenever $p_i(x) = 0$.



Some examples of w_i

- Constant 1/n (from before, bad in practice because it doesn't kill variance effectively, see Veach 1997 PhD Thesis Chapter 9)
- 1 or 0 depending on $X_{i,i}$ (example 1d: use strategy A if x < 0 otherwise B; You'll see examples of that in the path tracing lecture)
- Balance heuristic (You can't do much better than that, i.e. it's always within a bound of the hest strategy Veach 1997, 9.2.2)

$$w_i(x) = \frac{p_i(x)}{\sum_{k=0}^{n} p_k(x)}$$

Power heuristic (better if there is one strategy with very low variance)

$$w_i(x) = \frac{p_i(x)^{\beta}}{\sum_{k=0}^{n} p_k(x)^{\beta}}$$

Ok cat, my head is all mushy, can't you give me a practical example?

Ok cat, my head is all mushy, can't you give me a practical example?

- Integrand f(x), estimator F
- Balance heuristic
- M sampling strategies (j=0..M)
- N samples (i=0..N)

Adam Celarek 26

- For each sample i
 - Pick a distribution using probabilities p(j)
 - Draw a sample xi from it
 - Compute

$$F_{i} = \frac{f(x_{i})}{\sum_{j=1}^{M} p(j)p_{j}(x_{i})}$$

- $\mathbf{F} += F_i$ (like you did before in MC)
- F /= N
- Done!

- For each sample i
 - Pick a distribution using probabilities p(i)
 - Draw a sample x, from it
 - Compute

$$F_i = rac{f(x_i)}{\sum_{j=1}^M p(j)p_j(x_i)} egin{smallmatrix} F - \sum\limits_{i=1}^{M} rac{\sum\limits_{j=1}^{M} w_i(X_{i,j})}{n_i} rac{\sum\limits_{j=1}^{M} w_i(X)}{\sum\limits_{k=0}^{n} p_k(x)}. \end{bmatrix}$$

- $\mathbf{F} += F_i$ (like you did before in MC)
- F /= N
- Done!

The p terms from page 24 are p(j)*pj(xi) here. Some terms cancel each other out, we had

$$F = \sum_{i=1}^{n} \frac{1}{n_i} \sum_{j=1}^{n_i} w_i(X_{i,j}) \frac{f(X_{i,j})}{p_i(X_{i,j})}$$

and
$$w_i(x) = \frac{p_i(x)}{\sum_{k=0}^n p_k(x)}$$

- For each sample i
 - Pick a distribution using probabilities p(j)
 - Draw a sample x, from it
 - Compute

$$F_i = rac{f(x_i)}{\sum_{j=1}^M p(j)p_j(x_i)} \left| egin{array}{ccc} & \sum_{i=1}^{m_i} n_i \sum_{j=1}^{m_i} w_i(X_{i,j}) & p_i \ & \sum_{k=0}^{m} p_k(x) \end{array}
ight|.$$

- $\mathbf{F} += F_i$ (like you did before in MC)
- F /= N
- Done!

The p terms from page 24 are p(j)*pj(xi) here. Some terms cancel each other out, we had

$$F = \sum_{i=1}^{n} \frac{1}{n_i} \sum_{j=1}^{n_i} w_i(X_{i,j}) \frac{f(X_{i,j})}{p_i(X_{i,j})}$$

and
$$w_i(x) = \frac{p_i(x)}{\sum_{k=0}^n p_k(x)}$$

On page 24 and before we had a fixed number of samples for each strategy, now we choose the strategy probabilistically and hence the additional p(j).

- For each sample i
 - Pick a distribution using probabilities p(j)
 - Draw a sample x_i from it
 - Compute

$$F_{i} = \frac{f(x_{i})}{\sum_{j=1}^{M} p(j)p_{j}(x_{i})}$$

- $\mathbf{F} += F_i$ (like you did before in MC)
- F /= N
- Done!

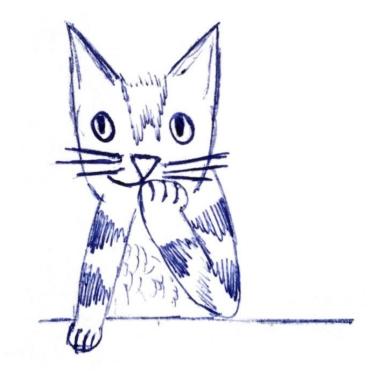
Multiple Importance Sampling: What's Going On?

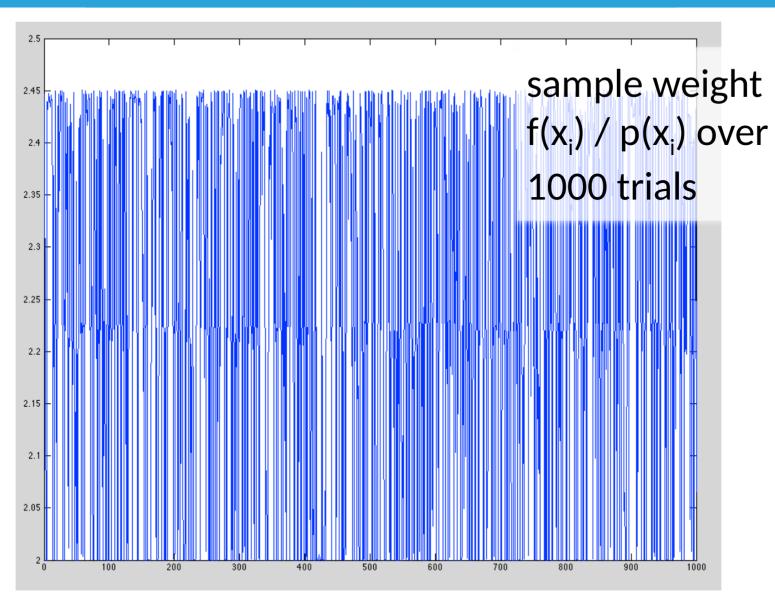
The above process generates samples with the joint distribution

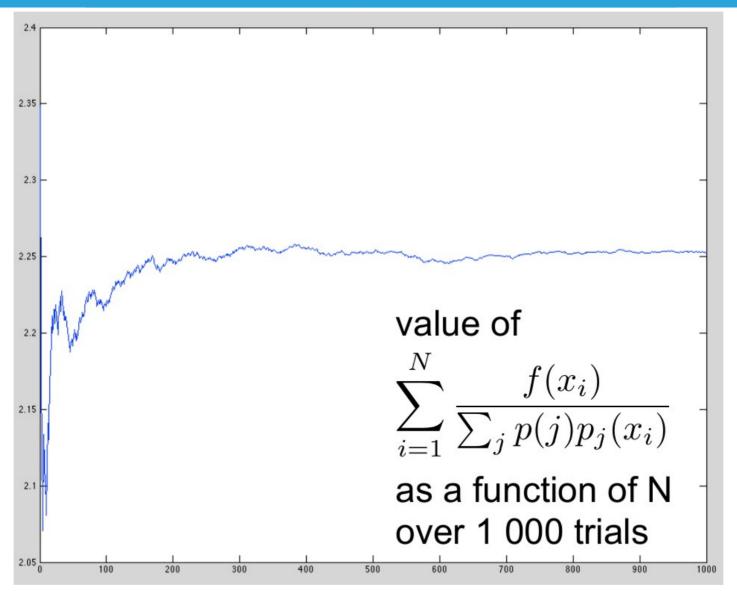
$$\bar{p}(x) = \sum_{j=1}^{M} p(j)p_j(x)$$

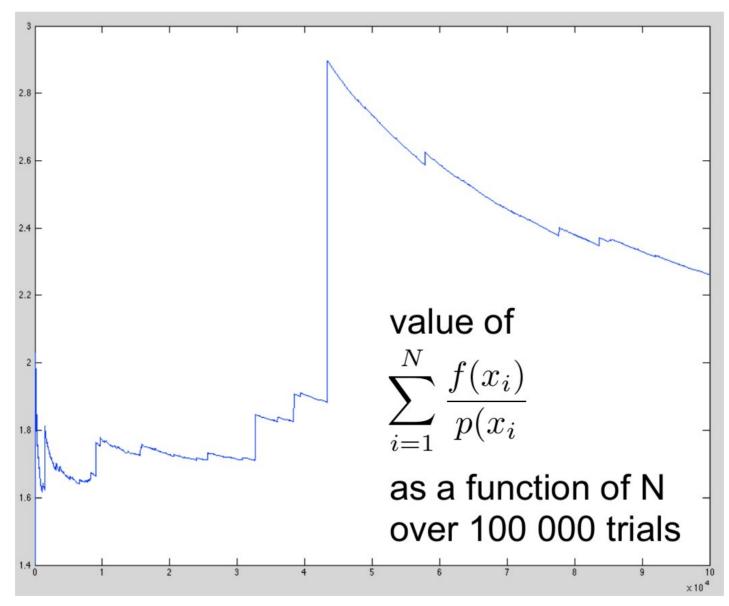
- Hence, we're just computing f/p with this new PDF.

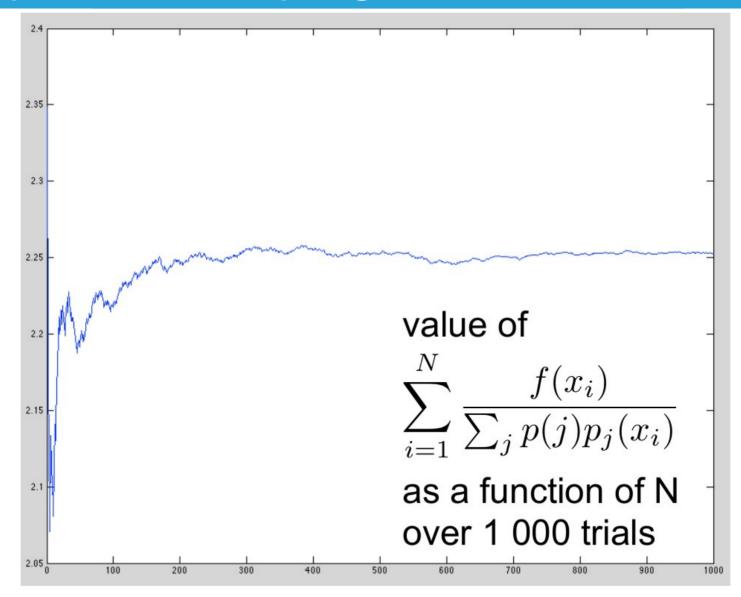
 Note that the p(j)'s are a discrete distribution, their sum must be 1!
- This is an unbiased estimate, just like regular MC.











Multiple Importance Sampling: Bells and Whistles

- This is the basic intuition and approach
- <u>Veach's 1995 paper</u> and <u>1997 thesis</u> contain a long treatment on how to choose the relative weighting between the PDFs and more general ways of constructing $\bar{p}(x)$ based on the individual distributions.
- Feel free to experiment with different strategies in your assignments:)

Useful reading (links)

- Jaakko Lehtinen's slides (I borrowed a lot from lecture 4)
- My DA thesis, Section 2.3 (very brief write up of Monte Carlo Integration + MIS, but maybe you'll like it)
- Last years lecture (recordings)
- Veach's PhD Thesis (contains a lot of information, I liked it better than the papers)
- Veach's 1995 paper

Adam Celarek 38