
Rendering: Importance Sampling

Bernhard Kerbl

Research Division of Computer Graphics

Institute of Visual Computing & Human-Centered Technology

TU Wien, Austria
With slides based on material by Jaakko Lehtinen, used with permission

Today’s Goal

Improve the efficiency of Monte Carlo with importance sampling

Understand how we can produce custom distributions in simple 1D,
2D and 3D domains by warping simple, uniform random variables

Learn how we can transform samples between cartesian and non-
cartesian domains (e.g., from polar (𝜃, 𝜙) to XYZ vectors)

Understand how we can incorporate these steps into path tracing

Rendering – Importance Sampling 2

Importance Sampling

All these things sound tedious… why do we need to create samples
from arbitrary distributions? In different domains even?

When we sample, e.g., the hemisphere, we can use any PDF we like

We know the selection of the proper 𝑝 𝑥 as importance sampling
Rendering – Importance Sampling 3

𝑓(𝑥)

𝑝(𝑥)

𝑓(𝑥)

𝑝(𝑥)

Bad sampling (high variance) Importance sampling (low variance)

Importance Sampling

Remember: if possible, you want a PDF 𝑝 𝑥 that mimics 𝑓 𝑥 !

Rendering – Importance Sampling 4

Let’s look at an application for importance sampling in practice

Consider a target function 𝑓(𝑥)

You want to compute its integral,
but have no closed-form solution
or don’t know what 𝑓(𝑥) is?

Clearly, a case for Monte Carlo

Monte Carlo Integration with Importance Sampling

Rendering – Importance Sampling 5

If we take another look, the shape of this function seems familiar…

It appears to be quite close to 𝑥2!

We already know that uniform
sampling of 𝑓(𝑥) is only one way
to do Monte Carlo integration…

Let’s try instead with 𝑝 𝑥 ∝ 𝑥2

Monte Carlo Integration with Importance Sampling

Rendering – Importance Sampling 6

Both methods converge
towards the same result

But the importance-sampled
method converges quicker!

Let’s see what the code
behind it looks like..

Uniform vs Importance Sampling (Python)

integrate_mc(0, 100, N, f, p_uniform, gen_uniform) vs integrate_mc(0, 100, N, f, p_x2, gen_x2)

Rendering – Importance Sampling 7

Uniform vs Importance Sampling (Python)

Rendering – Importance Sampling 8

integrate_mc(0, 100, N, f, p_uniform, gen_uniform) vs integrate_mc(0, 100, N, f, p_x2, gen_x2)

def integrate_mc(a: float, b: float, N: int, f, p, gen):

X = gen(a, b, N)

estimates = f(X)/p(X, a, b)

result = estimates.sum() / N

return result

def p_uniform(x, a: float, b: float):

return x/(b-a)

def p_x2(x, a: float, b: float):

b3 = ((b**3)/3)

a3 = ((a**3)/3)

return x**2/(b3-a3)

def gen_uniform(a: float, b: float, N: int):

xi = np.random.rand(N)

return xi * (b - a) + a

def gen_x2(a: float, b: float, N: int):

xi = np.random.rand(N)

b3 = (b**3)

a3 = (a**3)

return (a3+xi*(b3-a3))**(1.0/3.0)

By the end of the day, this
should make sense to you!

Before, we did uniform hemisphere sampling, and it worked

But perhaps we can also use
importance sampling here?

Can we perhaps importance-sample
the rendering equation?

The hemisphere is a peculiar domain. Sampling it with arbitrary
distributions is a little bit more complex…

Importance Sampling on the Hemisphere

Rendering – Importance Sampling 9

Today’s Roadmap

Rendering – Importance Sampling 10

What exactly are CDFs and PDFs?

What is the inversion method?

How to sample arbitrary functions?

What’s the fastest way to cosine-

weighted hemisphere sampling?

The Inversion

Method

Sampling the

Unit Disk

Required

Background

(CDF, PDF)

Importance Sampling

for the Diffuse BRDF

Sampling the

Hemisphere

Importance

Sampling Unlocked!

Sampling the Unit Disk 2:

Crossing Domains

Today’s Roadmap

Rendering – Importance Sampling 11

What exactly are CDFs and PDFs?

What is the inversion method?

How to sample arbitrary functions?

What’s the fastest way to cosine-

weighted hemisphere sampling?

The Inversion

Method

Sampling the

Unit Disk

Required

Background

(CDF, PDF)

Importance Sampling

for the Diffuse BRDF

Sampling the

Hemisphere

Sampling the Unit Disk 2:

Crossing Domains

Importance

Sampling Unlocked!

Discrete Random Variables

In daily life, we are mostly confronted with discrete random results

A coin flip

Toss of a die

Cards in a deck

Each possible outcome of a random variable is associated with a
specific probability 𝑝. Probabilities must sum up to 1 (100%)

E.g., a fair die: 𝑋 ∈ 1,2,3,4,5,6 and 𝑝1 = 𝑝2 = ⋯ = 𝑝6 =
1

6

Rendering – Monte Carlo Integration I 12

Continuous Random Variables

A continuous random variable 𝑋 with a given range [𝑎, 𝑏) can
assume any value 𝑋𝑖 that fulfills 𝑎 ≤ 𝑋𝑖 < 𝑏

Working with continuous variables generalizes the methodology for
many complex evaluations that depend on probability theory

There are infinitely many possible outcomes and, consequently,
the observation of any specific event has with vanishing probability

How can we find the probabilities for continuous variables?[2]

Rendering – Importance Sampling 13

Cumulative Distribution Function (CDF)

For continuous variables, we cannot assign probabilities to values

The cumulative distribution function (CDF) lets us compute the
probability of a variable taking on a value in a specified range [2]

We use notation 𝑃𝑋 𝑥 for the CDF of 𝑋’s distribution, which yields
the probability of 𝑋 taking on any value ≤ 𝑥

Rendering – Importance Sampling 14

0 1

If 𝑋 can take on any value with equal probability, what is the probability of 𝑋 = 0.5?

?

𝑃𝑋 𝑏 − 𝑃𝑋 𝑎 = 𝑃𝑟 𝑎 ≤ 𝑋𝑖 ≤ 𝑏

Read as: 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑋 𝑡𝑎𝑘𝑖𝑛𝑔 𝑜𝑛 𝑎𝑛𝑦 𝑣𝑎𝑙𝑢𝑒 𝑓𝑟𝑜𝑚 0 𝑡𝑜 𝑏,
𝑚𝑖𝑛𝑢𝑠 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑋 𝑡𝑎𝑘𝑖𝑛𝑔 𝑜𝑛 𝑎𝑛𝑦 𝑣𝑎𝑙𝑢𝑒 𝑓𝑟𝑜𝑚 0 𝑡𝑜 𝑎

Example: uniform variable ξ
generates values in range [0, 1):

𝑃𝜉 𝑥 = 𝑥

𝑃𝜉 0.75 − P𝜉 0. 5 = 0.25

Probability for a Range with CDF

Rendering – Importance Sampling 15

𝑦

𝑥0 1

1

𝑃(𝑥)

Properties of the CDF

CDF is bounded by [0, 1] and monotonic increasing

Probability of no outcome is 0, the probability of some outcome is 1

Die: Rolling a number between 1 and 6 cannot be less probable
than rolling a number between 1 and 5

CDFs can be applied for discrete
and continuous random variables

How do we compute the CDF?

Rendering – Importance Sampling 16

𝑦

𝑥0

1
𝑃(𝑥)

Determine the limits [𝑎, 𝑏] of your variable 𝑋

For each outcome, find its probability 𝑝𝑎, … , 𝑝𝑏
The CDF of that variable is then a function 𝑃𝑋 𝑥 = σ𝑖=𝑎

𝑥 𝑝𝑖

Computing the CDF for Discrete Random Variables

Rendering – Importance Sampling 17

𝑥0

1

𝑝0 𝑝0 𝑝0 𝑝0

𝑝1 𝑝1 𝑝1

𝑝3

𝑝2𝑝2

𝑥0

1

𝑝0 𝑝1

𝑝3
𝑝2

Outcome Probabilities Cumulated Probabilities (CDF)

Probability Density Function (PDF)

The PDF 𝑝(𝑥) is the derivative of the CDF 𝑃(𝑥): 𝑝 𝑥 =
𝑑𝑃(𝑥)

𝑑𝑥

For a PDF 𝑝(𝑥), 𝑃 𝑥 = ∫ 𝑝 𝑥 𝑑𝑥 and ∫𝑎
𝑏
𝑝 𝑥 𝑑𝑥 = 𝑃 𝑏 − 𝑃(𝑎)

𝑝(𝑥) must be positive everywhere: a negative value would mean we

can find [𝑎, 𝑏] such that ∫𝑎
𝑏
𝑝 𝑥 𝑑𝑥 has a negative probability

𝑝𝑋(𝑥) can be understood as the relative probability of 𝑋𝑖 = 𝑥.
I.e., if 𝑝𝑋 𝑎 = 2𝑝𝑋(𝑏), then 𝑋𝑖 = 𝑎 is twice as likely as 𝑋𝑖 = 𝑏

Rendering – Importance Sampling 18

Notes about the PDF

Notation may look like probability, but PDF values can be >1!

For both discrete and continuous variables, we can reference
“𝑝(𝑥)” to describe their distribution

Summary: for a continuous variable 𝑋 with a known, integrable PDF,
we can find the CDF and probabilities of 𝑋 landing in a given range

…is this actually helpful?

Rendering – Importance Sampling 19

Today’s Roadmap

Rendering – Importance Sampling 20

What exactly are CDFs and PDFs?

What is the inversion method?

How to sample arbitrary functions?

What’s the fastest way to cosine-

weighted hemisphere sampling?

The Inversion

Method

Sampling the

Unit Disk

Required

Background

(CDF, PDF)

Importance Sampling

for the Diffuse BRDF

Sampling the

Hemisphere

Importance

Sampling Unlocked!

Sampling the Unit Disk 2:

Crossing Domains

Creating Variables with Custom Distributions

By discovering the CDF, we have found a powerful new tool

The function is often invertible: this means, we can generate
random variables with a desired distribution!

Rationale: Since the CDF is monotonic increasing, there is a unique
value of 𝑃𝑋 𝑥 for every 𝑥 with 𝑝𝑋 𝑥 > 0

More informally, if we plot a 1D CDF, any 𝑥 value that 𝑋 can take on
has a unique, corresponding coordinate on the 𝑦-axis

Rendering – Importance Sampling 21

Basic Sampling with Canonical Random Variables

We want to generate samples for a custom distribution from a
random input that we can easily obtain in a computer environment

Our assumed input is the canonical random variable 𝜉:

continuous (i.e., a real data type)

with uniform distribution

in the range [0, 1)

Goal: warp samples of 𝜉 to ones distributed according to some 𝑝(𝑥)

Rendering – Importance Sampling 22

The Canonical Random Variable

Our assumed default input variable

PDF for 𝜉 is 1 in range [0,1) and 0 everywhere else

CDF for 𝜉 is linear

Important property: we have equality 𝑃 𝜉𝑖 = 𝜉𝑖

Rendering – Importance Sampling 23

The Inversion Method

For discrete variables: we draw 𝜉 and iterate event probabilities

When their sum first surpasses 𝜉, we have found 𝑋𝑖
For continuous variables: exploit 𝑃𝑋’s bijectivity and use its inverse!

We can use canonic 𝜉 to compute 𝑋𝑖 = 𝑃𝑋
−1(𝜉) according to 𝑝𝑋(𝑥)

Rendering – Importance Sampling 24

𝜉

0

1
𝑃(𝑥)

𝑋𝑖

𝜉

0

1

𝑋𝑖

𝑝0 𝑝0 𝑝0 𝑝0

𝑝1 𝑝1 𝑝1

𝑝3

𝑝2𝑝2

Example: Exponential Distribution

Used mainly for estimation of time intervals between two events

The probability of a value decreases exponentially

Needs additional parameter 𝜆, often called rate parameter

We can find its PDF and CDF in most probability text books

𝑝 𝑥, 𝜆 = 𝜆𝑒−𝜆𝑥

𝑃 𝑥, 𝜆 = 1 − e−𝜆𝑥, 𝑃−1 𝑥′, 𝜆 = −
log(1−𝑥)

𝜆

Rendering – Importance Sampling 25

Warping Uniform To Exponential Distribution

Rendering – Importance Sampling 26

def warp_expx(X, lambda: float):

return –np.log(1.0 – X) / lambda

LAMBDA = 0.5

samples_uniform = np.random.rand(N)

samples_exp_ref = np.random.exponential(1.0/LAMBDA, N)

samples_exp_gen = warp_expx(samples_uniform, LAMBDA)

h1, h2, h3 = histograms(0.0, 1.0, 20, samples_uniform, samples_exp_ref, samples_exp_gen)

show_histogram(h1)

show_histogram(h2)

show_histogram(h3)

Histograms of generated samples

Warping Uniform To Exponential Distribution

Rendering – Importance Sampling 27

𝑋𝑖 = 𝑃𝑋
−1 𝜉𝑖

𝜉𝑖

𝑅𝑖

𝑋𝑖

Mix Multiple Random Variables

Let’s add another variable and combine them for 2D output

In doing so, we are extending our sampling domain

The sampling domain is defined by

The number of variables, and

Their respective ranges

Think of the domain as a space with the axes representing variables

Rendering – Importance Sampling 28

Joint PDF

If multiple variables are in a domain, the joint PDF probability
density of a given point in that domain depends on all of them

In the simplest case, with independent variables 𝑋 and 𝑌, the joint
PDF of their shared domain PDF is simply 𝑝 𝑥, 𝑦 = 𝑝𝑋 𝑥 𝑝𝑌(𝑦)

We can sample independent variables in a domain by computing
and sampling the inverse of their respective CDFs, separately

Rendering – Importance Sampling 29

2D with 𝑌 = 𝜉. For 𝑋, use 𝑋 ∈ [0,
𝜋

2
) and 𝑝 𝑥 = cos 𝑥

𝑃𝑋 𝑥 = ∫ 𝑝 𝑥 𝑑𝑥 = ∫cos 𝑥 𝑑𝑥 = sin 𝑥

𝑃𝑋
−1 𝜉 = sin−1(𝜉)

Inversion Method Examples in 2D

Rendering – Importance Sampling 30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Y

X

def gen_cosx(a: float, b: float, N: int):

xi = np.random.rand(N)

return np.arcsin(xi)

def p_cosx(x, a: float, b: float):

return np.cos(x)

X_i = gen_cosx(0, 1, 1000)

plot(X_i, np.random.rand(1000))

𝑋 and 𝑌 in range 0,1

For both variables, 𝑝 𝑣 = 2𝑣, 𝑃 𝑣 = 𝑣2, 𝑃−1 𝜉 = 𝜉

Inversion Method Examples in 2D

Rendering – Importance Sampling 31

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Y

X

def gen_2v(a: float, b: float, N: int):

xi = np.random.rand(N)

return np.sqrt(xi)

def p_2v(v, a: float, b: float):

return 2*v

X_i = gen_2v(0, 1, 1000)

Y_i = gen_2v(0, 1, 1000)

plot(X_i, Y_i)

Let’s pick a slow-growing portion of the distribution function

Compared to 0,1 , cumulative density only doubles in 2,4

Choosing a Different Range

Rendering – Importance Sampling 32

𝑝 𝑥 = 2𝑥 𝑃 𝑥 = 𝑥2 (𝑙𝑜𝑔𝑝𝑙𝑜𝑡)

Try 𝑋 and 𝑌 in range 2,4

For both variables, 𝑝 𝑣 = 2𝑣, 𝑃 𝑣 = 𝑣2, 𝑃−1 𝜉 = 𝜉

Nothing happens.

How can we adapt variable ranges?

Something is missing!

Inversion Method Examples in 2D

Rendering – Importance Sampling 33

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5 1 1.5 2 2.5 3 3.5 4

Y

X

Consider a given range from 𝑎 to 𝑏 for a variable and a candidate
PDF 𝑓(𝑥) with the desired distribution shape

If ∫𝑎
𝑏
𝑓 𝑥 𝑑𝑥 ≠ 1, 𝑓 𝑥 is not a valid PDF for this variable

The probability that the result is one of all possible results ≠ 100%

To fix this, we compute the proportionality constant 𝑐 = ∫𝑎
𝑏
𝑓 𝑥 𝑑𝑥

and compute a valid 𝑃 𝑥 =
𝐹(𝑥)

𝑐
and 𝑝 𝑥 =

𝑓(𝑥)

𝑐
∝ 𝑓(𝑥)

Restricting the PDF / CDF

Rendering – Importance Sampling 34

For range [𝑎, 𝑏] where 𝑎 ≠ 0, we add
a constant offset 𝑘 = −𝑃(𝑎)

Try 𝑋, 𝑌 ∈ 2,4 and 𝑓 𝑣 = 2𝑣 again

We compute 𝑐𝑌 = 𝑐𝑋 = ∫2
4
2𝑣 𝑑𝑣 = 12 and add 𝑘 = −

4

12
to get:

𝑃 𝑣 =
𝑣2−4

12
, 𝑃−1 𝜉 = 2 3 ⋅ 𝜉 + 1, 𝑝 𝑣 =

2𝑣

12

Restricting the PDF / CDF

Rendering – Importance Sampling 35

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

2 2.5 3 3.5 4

Y

X

The Inversion Method, Completed

Find a candidate function 𝑓(𝑥) with the desired distribution shape

Choose the range [𝑎, 𝑏] in 𝑓(𝑥) you want your variable to imitate

Determine the indefinite integral 𝐹 𝑥 = ∫ 𝑓 𝑥 𝑑𝑥

Compute the proportionality constant 𝑐 = 𝐹 𝑏 − 𝐹(𝑎)

The CDF for the new variable 𝑋 is 𝑃𝑋 𝑥 =
𝐹 𝑥 −𝐹(𝑎)

𝑐

Compute the inverse of the CDF 𝑃𝑋
−1 𝜉

Use 𝑃𝑋
−1(𝜉) to warp the samples of a canonic random variable

so that they are distributed with 𝑝 𝑥 =
𝑓(𝑥)

𝑐
in the range [𝑎, 𝑏)

Rendering – Importance Sampling 36

Deriving the 𝑝 𝑥 ∝ 𝑥2 Sample Generation Functions

integrate_mc(0, 100, N, f, p_uniform, gen_uniform) vs integrate_mc(0, 100, N, f, p_x2, gen_x2)

def integrate_mc(a: float, b: float, N: int, f, p, gen):

X = gen(a, b, N)

estimates = f(X)/p(X, a, b)

result = estimates.sum() / N

return result

def p_uniform(x, a: float, b: float):

return x/(b-a)

def p_x2(x, a: float, b: float):

b3 = ((b**3)/3)

a3 = ((a**3)/3)

return x**2/(b3-a3)

Rendering – Importance Sampling 37

integrate_mc(0, 100, N, f, p_uniform, gen_uniform) vs integrate_mc(0, 100, N, f, p_x2, gen_x2)

def integrate_mc(a: float, b: float, N: int, f, p, gen):

X = gen(a, b, N)

estimates = f(X)/p(X, a, b)

result = estimates.sum() / N

return result

def p_uniform(x, a: float, b: float):

return x/(b-a)

def p_x2(x, a: float, b: float):

b3 = ((b**3)/3)

a3 = ((a**3)/3)

return x**2/(b3-a3)

Deriving the 𝑝 𝑥 ∝ 𝑥2 Sample Generation Functions

Rendering – Importance Sampling 38

𝐹 𝑥 =
𝑥3

3
, 𝑐 =

𝑏3 − 𝑎3

3
,

𝑝 𝑥 =
𝑥2

𝑐
,

𝑃𝑋
−1 𝜉 =

3
𝑎3 + 𝜉(𝑏3 − 𝑎3),

def gen_uniform(a: float, b: float, N: int):

xi = np.random.rand(N)

return xi * (b - a) + a

def gen_x2(a: float, b: float, N: int):

xi = np.random.rand(N)

b3 = (b**3)

a3 = (a**3)

return (a3+xi*(b3-a3))**(1.0/3.0)

Today’s Roadmap

Rendering – Importance Sampling 39

What exactly are CDFs and PDFs?

What is the inversion method?

How to sample arbitrary functions?

What’s the fastest way to cosine-

weighted hemisphere sampling?

The Inversion

Method

Sampling the

Unit Disk

Required

Background

(CDF, PDF)

Importance Sampling

for the Diffuse BRDF

Sampling the

Hemisphere

Importance

Sampling Unlocked!

Sampling the Unit Disk 2:

Crossing Domains

Sampling a Unit Disk

Imagine we have a disk-shaped surface with radius 𝑟 = 1 that
registers incoming light (color) from directional light sources

As an exercise, we want to approximate the total
incoming light over the disk’s surface area

We integrate over an area of size 𝜋

We will use the Monte Carlo integral for that

Rendering – Importance Sampling 40

2

2
r = 1

Uniformly Sampling the Unit Disk

If we can manage to uniformly sample the disk, then we can
compute the Monte Carlo integral as a simple average × 𝜋

By drawing uniform samples in 𝑥 and 𝑦,
we cannot cover the area precisely

Inscribed square: information lost

Circumscribed square: unnecessary samples

Rendering – Importance Sampling 41

Uniformly Sampling the Unit Disk

If we can manage to uniformly sample the disk, then we can
compute the Monte Carlo integral as a simple average

By drawing uniform samples in 𝑥 and 𝑦,
we cannot cover the area precisely

Inscribed square: information lost

Circumscribed square: unnecessary samples

Rendering – Importance Sampling 42

Uniformly Sampling the Unit Disk

If we can manage to uniformly sample the disk, then we can
compute the Monte Carlo integral as a simple average

By drawing uniform samples in 𝑥 and 𝑦,
we cannot cover the area precisely

Inscribed square: information lost

Circumscribed square: unnecessary samples

Rendering – Importance Sampling 43

Back to the Unit Disk

We do not want to waste samples if we can avoid it

Instead, find a way to generate uniform samples on the disk

Create samples in a non-cartesian domain: 2D polar coordinates

Polar coordinates defined by radius 𝑟 ∈ [0,1) and angle 𝜃 ∈ [0,2𝜋)

Transformation to cartesian coordinates:
𝑥 = 𝑟 sin 𝜃
y = 𝑟 cos 𝜃

Rendering – Importance Sampling 44

Uniformly Sampling the Unit Disk?

Convert two 𝜉 to ranges 0, 1 , [0,2𝜋) to get polar coordinates

Convert to cartesian coordinates

Rendering – Importance Sampling 45

void sampleUnitDisk()
{

std::default_random_engine r_rand_eng(0xdecaf);
std::default_random_engine theta_rand_eng(0xcaffe);

std::uniform_real_distribution<double> uniform_dist(0.0, 1.0);

for (int i = 0; i < NUM_SAMPLES; i++)
{

auto r = uniform_dist(r_rand_eng);
auto theta = uniform_dist(theta_rand_eng) * 2 * M_PI;
auto x = r * sin(theta);
auto y = r * cos(theta);

samples2D[i] = std::make_pair(x, y);
}

}

We successfully sampled the unit disk in the proper range

However, the distribution is not
uniform with respect to the area

Samples clump together at center

Averaging those samples will give
us a skewed result for the integral!

Clumping

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

Rendering – Importance Sampling 46

Uniformly Sampling the Unit Disk: A Solution

The area of a disk is proportional to 𝑟2, times a constant factor 𝜋

If we see the disk as concentric rings of width Δ𝑟, the 𝑗 inner rings

up to radius 𝑟𝑗 = 𝑗Δ𝑟 should contain
𝑟𝑗

𝑟

2
𝑁 out of 𝑁 total samples

Conversely, the 𝑖𝑡ℎ sample should lie in the ring at radius 𝑟𝑖 = 𝑟
𝑖

𝑁

Since 𝜉 is uniform in [0, 1), we can switch
𝑖

𝑁
for 𝜉𝑖 to get 𝑟𝑖 = 𝑟 𝜉𝑖

Rendering – Importance Sampling 47

Uniformly Sampling the Unit Disk: A Solution

It works, and it is not even a bad way to
arrive at the correct solution

However, for more complex scenarios, we
might struggle to find the solution so easily

With the tools we introduced earlier (and a
few new tricks), we can formalize this process
for arbitrary setups!

Rendering – Importance Sampling 48

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

Today’s Roadmap

Rendering – Importance Sampling 49

What exactly are CDFs and PDFs?

What is the inversion method?

How to sample arbitrary functions?

What’s the fastest way to cosine-

weighted hemisphere sampling?

The Inversion

Method

Sampling the

Unit Disk

Required

Background

(CDF, PDF)

Importance Sampling

for the Diffuse BRDF

Sampling the

Hemisphere

Importance

Sampling Unlocked!

Sampling the Unit Disk 2:

Crossing Domains

Another Look at the PDF

Rendering – Importance Sampling

We saw samples being “warped”: we can interpret the inversion
method as a spatial transformation of uniform samples

Let’s treat the space in the input domain like a grid of infinitesimal
hypercubes: segments in 1D, squares in 2D and cubes in 3D[5]

If we warp a domain where each variable is 𝜉 to one with joint PDF

𝑝𝐷, then
1

𝑝𝐷
is the change in volume of the hypercubes after warping

50

Visualizing the PDF in 2D

The left represents our inputs and the right our target distribution

This time, we warp grid coordinates with the inversion method

Rendering – Importance Sampling 51

ξ1, ξ2 𝑌 = ξ2 and 𝑋 ∈ 0,1 , 𝑝𝑋 𝑥 = 2𝑥

ξ1, ξ2

The areas of all 2D hypercubes (grid cells) are scaled by
1

𝑝𝑋 𝑥 𝑝𝑌(𝑦)

𝑝𝑋 𝑥 = 2𝑥, cells on the right at (1, 𝑦) are half their original width

Visualizing the PDF in 2D

Rendering – Importance Sampling 52

𝑌 = ξ2 and 𝑋 ∈ 0,1 , 𝑝𝑋 𝑥 = 2𝑥

Earlier, we saw samples 𝑋, 𝑌 ∈ 0,1 with 𝑝𝑋 𝑥 = 2𝑥, 𝑝𝑌(𝑦) = 2𝑦

Visualizing the PDF in 2D

Rendering – Importance Sampling 53

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

2D Variables with Linear PDFs

In this 2D setup, we have joint PDF 𝑝 𝑥, 𝑦 = 𝑝𝑋 𝑥 𝑝𝑌 𝑦 = 4𝑥𝑦

Space near point (1,1) is compressed down to
1

4
of its original size

Visualizing the PDF in 2D

Rendering – Importance Sampling 54

ξ1, ξ2 𝑋, 𝑌 ∈ 0,1 , 𝑝𝑋 𝑥 = 2𝑥, 𝑝𝑌 𝑦 = 2𝑦

This PDF compresses space at higher values of x, 𝑦, dilates at lower

If space shrinks or grows, samples in it become denser or sparser

Visualizing the PDF in 2D

Rendering – Importance Sampling 55

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ξ1, ξ2 𝑋, 𝑌 ∈ 0,1 , 𝑝𝑋 𝑥 = 2𝑥, 𝑝𝑌 𝑦 = 2𝑦

Let’s transform a regular grid from polar to cartesian coordinates

Polar To Cartesian Coordinates

Rendering – Importance Sampling 56

𝑋 = 𝑟 cos(𝜃)
𝑌 = 𝑟 sin(𝜃)

𝑟

𝜃

Take 100k samples, transform and see in which square they end up

First Attempt to Learn the PDF

Rendering – Importance Sampling 57

𝑋 = 𝑟 cos(𝜃)
𝑌 = 𝑟 sin(𝜃)

Take 100k samples, transform and see in which square they end up

First Attempt to Learn the PDF

Rendering – Importance Sampling 58

ξ1, ξ2 𝑋 = 𝜉1 cos(2𝜋𝜉2), 𝑌 = 𝜉1 sin(2𝜋𝜉2)

Knowing the PDF

If we know the effect of a transformation 𝑇 on the PDF, we can

Use it in the Monte Carlo integral to weight our samples, or

Compensate to get a uniform sampling method after transformation

Rendering – Importance Sampling 59

𝐼𝑛𝑝𝑢𝑡 (𝜉1, 𝜉2) 𝐶𝑎𝑟𝑡𝑒𝑠𝑖𝑎𝑛 (𝑥, 𝑦)

𝑃𝑜𝑙𝑎𝑟 (r, 𝜃)

𝑇(𝑟, 𝜃)
Scale +

compensate

Knowing the PDF

If we know the effect of a transformation 𝑇 on the PDF, we can

Use it in the Monte Carlo integral to weight our samples, or

Compensate to get a uniform sampling method after transformation

Rendering – Importance Sampling 60

𝐼𝑛𝑝𝑢𝑡 (𝜉1, 𝜉2) 𝐶𝑎𝑟𝑡𝑒𝑠𝑖𝑎𝑛 (𝑥, 𝑦)

𝑃𝑜𝑙𝑎𝑟 (r, 𝜃)

𝑇(𝑟, 𝜃)

Equal area!

Scale +

compensate

Computing the PDF after a Transformation

Assume a random variable 𝐴 and a bijective transformation
𝑇 that yields another variable 𝐵 = 𝑇 𝐴

Bijectivity implies that 𝑏 = 𝑇(𝑎) must be either monotonically
increasing or decreasing with 𝑎

This implies that there is a unique 𝐵i for every 𝐴i, and vice versa

In this case, the CDFs for the two variables fulfill 𝑃𝐵 𝑇(𝑎) = 𝑃𝐴(𝑎)

Rendering – Importance Sampling 61

Computing the PDF after a Transformation

If 𝑏 = 𝑇(𝑎) and 𝑏 increases with 𝑎, we have:
𝑑𝑃𝐵(𝑏)

𝑑𝑎
=

𝑑𝑃𝐴(𝑎)

𝑑𝑎

If 𝑏 decreases with 𝑎 (e.g., 𝑏 = −𝑎), we have: −
𝑑𝑃𝐵(𝑏)

𝑑𝑎
=

𝑑𝑃𝐴(𝑎)

𝑑𝑎

Since 𝑝𝐵 is the non-negative derivative of 𝑃𝐵, we can rewrite as:

𝑝𝐵 𝑏
𝑑𝑏

𝑑𝑎
= 𝑝𝐴 𝑎 ,

𝑝𝐵 𝑏 =
𝑑𝑏

𝑑𝑎

−1

𝑝𝐴 𝑎

Rendering – Importance Sampling 62

𝑈𝑠𝑖𝑛𝑔:
𝑑𝑃𝑋 𝑥

𝑑𝑦
=
𝑝𝑋 𝑥 𝑑𝑥

𝑑𝑦

Computing the PDF after a Transformation

Let’s interpret 𝑝𝐵 𝑏 =
𝑑𝑏

𝑑𝑎

−1
𝑝𝐴 𝑎

It is the probability density of 𝐴 at 𝑎, multiplied by
𝑑𝑏

𝑑𝑎

−1

𝑑𝑏

𝑑𝑎

−1
has two intuitive interpretations:

the change in sample density at point 𝑎 if we transform 𝑎 by 𝑇
or,
the reciprocal change in volume (space) for a volume element
(hypercube) at point 𝑎 if we transform 𝐴 by transformation 𝑇

Rendering – Importance Sampling 63

Multidimensional Transformations

If we try to apply the above to the unit disk, we fail at 𝑥 = 𝑟 sin 𝜃

We can’t evaluate
𝑑𝑥

𝑑𝑟

−1
: the transformation that produces one

target variable is dependent on both input variables and vice-versa

We cannot compute the change in the PDF between individual
variables, we must take them all into account simultaneously

It’s matrix time!
Rendering – Importance Sampling 64

Multidimensional Transformations

We write the set of 𝑁 values from a multidimensional variable Ԧ𝐴

as a vector Ԧ𝑎 and the 𝑁 outputs of transformation 𝑇 as a vector 𝑏:

Ԧ𝑎 =

𝑎1
⋮
𝑎𝑁

, 𝑏 =
𝑏1
⋮
𝑏𝑁

=
𝑇1(Ԧ𝑎)
⋮

𝑇𝑁(Ԧ𝑎)
= 𝑇(Ԧ𝑎)

Instead of quantifying the change in volume incurred by 𝑇 𝑎 ,
𝑑𝑇 𝑎

𝑑𝑎
, our goal is now to quantify the change incurred by 𝑇 Ԧ𝑎

Rendering – Importance Sampling 65

The Jacobian Matrix

For a transformation 𝑏 = 𝑇(Ԧ𝑎), we can define the Jacobian matrix
that contains all 𝑏𝑗 , 𝑎𝑖 combinations of partial differentials

𝐽𝑇(Ԧ𝑎) =

𝜕𝑏1

𝜕𝑎1
⋯

𝜕𝑏1

𝜕𝑎𝑁

⋮ ⋱ ⋮
𝜕𝑏𝑀

𝜕𝑎1
⋯

𝜕𝑏𝑀

𝜕𝑎𝑁

If we consider Ԧ𝐴’s domain as a space with 𝑁 axes, 𝐽𝑇(Ԧ𝑎) gives the

change of the edges of a volume element from Ԧ𝑎 to 𝑏 = 𝑇(Ԧ𝑎)
Rendering – Importance Sampling 66

The Jacobian Matrix, Visualized

Change in edges of a volume element (infinitesimal hypercube) at Ԧ𝑎

𝐽𝑇(Ԧ𝑎) =

𝜕𝑏1
𝜕𝑎1

⋯
𝜕𝑏1
𝜕𝑎𝑁

⋮ ⋱ ⋮
𝜕𝑏𝑁
𝜕𝑎1

⋯
𝜕𝑏𝑁
𝜕𝑎𝑁

Rendering – Importance Sampling 67

𝑏Ԧ𝑎
1
0

𝜕𝑏1
𝜕𝑎1
𝜕𝑏2
𝜕𝑎1

0
1

𝜕𝑏1
𝜕𝑎2
𝜕𝑏2
𝜕𝑎2

The Jacobian

The columns of a square matrix can be interpreted as the natural

base vectors of a space

1
0
⋮
0

,

0
1
⋮
0

if they were transformed by it

The determinant . of a matrix yields the volume
of a parallelepiped spanned by these vectors[3]

𝐽𝑇 , the Jacobian of 𝑇, gives the change in volume at Ԧ𝑎 due to 𝑇

Rendering – Importance Sampling 68

𝑏

𝑱𝑻 𝒂

Computing the PDF of a Transformation

Let’s try polar coordinates again:
𝑥
𝑦 = 𝑇

𝑟
𝜃

=
𝑟 sin 𝜃
𝑟 cos 𝜃

𝜕𝑇
𝑟
𝜃

𝜕
𝑟
𝜃

= 𝐽𝑇 =

𝜕𝑥

𝜕𝑟

𝜕𝑥

𝜕𝜃
𝜕𝑦

𝜕𝑟

𝜕𝑦

𝜕𝜃

=
cos 𝜃 −𝑟 sin 𝜃
sin 𝜃 𝑟 cos 𝜃

= r

𝑝 𝑥, 𝑦 =
𝑝(𝑟,𝜃)

𝑟
, or 𝑝 𝑟, 𝜃 = 𝑟 𝑝 𝑥, 𝑦 , which tells us: the change in

probability density from (𝑟, 𝜃) to 𝑥, 𝑦 is inverse proportional to 𝒓

Rendering – Importance Sampling 69

Sampling Joint PDFs Correctly

For independent variables, the joint PDF 𝑝(𝑥, 𝑦, …) is 𝑝𝑋 𝑥 𝑝𝑌 𝑦 …

In general, this is an assumption that we should not rely on

Furthermore, after a transformation, only the joint PDF is known

The proper way to sample multiple variables 𝑋, 𝑌 is to compute

the marginal density function 𝑝𝑋 𝑥 of one

the conditional density function 𝑝𝑌 𝑦|𝑥 of the other

Rendering – Importance Sampling 70

Marginal and Conditional Density Function

Assume we have obtained the joint PDF 𝑝 𝑥, 𝑦 of variables 𝑋, 𝑌
with ranges [𝑎𝑋, 𝑏𝑋) and [𝑎𝑌, 𝑏𝑌)

In a 2D domain with 𝑋, 𝑌 we can think of 𝑝𝑋 𝑥 as the average
density of 𝑝 𝑥, 𝑦 at a given 𝑥 over all possible values 𝑦

We can obtain the marginal density function for one of them by

integrating out all the others, e.g.: 𝑝𝑋 𝑥 = ∫𝑎𝑌
𝑏𝑌 𝑝 𝑥, 𝑦 𝑑𝑦

We can then find 𝑝 𝑦|𝑥 =
𝑝(𝑥,𝑦)

𝑝𝑋(𝑥)

Rendering – Importance Sampling 71

Adding More Variables

What to do for multiple variables, e.g. 𝑋, 𝑌 and 𝑍?

Find first marginal density 𝑝𝑋 𝑥 = ∫𝑎𝑍
𝑏𝑍
∫𝑎𝑌
𝑏𝑌
𝑝 𝑥, 𝑦, 𝑧 𝑑𝑦 𝑑𝑧

Find first conditional density 𝑝𝑋 𝑦, 𝑧|𝑥 =
𝑝 𝑥,𝑦,𝑧

𝑝𝑋 𝑥

Find second marginal density 𝑝𝑌 𝑦|𝑥 = ∫𝑎𝑍
𝑏𝑍
𝑝 𝑥, 𝑦, 𝑧 𝑑𝑧

Find second conditional density 𝑝𝑋 𝑧|𝑥, 𝑦 =
𝑝 𝑦,𝑧|𝑥

𝑝𝑌 𝑦|𝑥

Integrate + invert first marginal, first and second conditional densities

Sample each of them

Extend ad libitum to even more variables

Rendering – Importance Sampling 72

Sampling the Unit Disk: The Formal Solution

We know the proportionality constant is 𝜋 (area of sampled disk)

Since we want uniform sampling and sample probabilities should

integrate to 1, the target PDF in cartesian coordinates is 𝑝 𝑥, 𝑦 =
1

𝜋

𝐽𝑇 told us that 𝑝 𝑟, 𝜃 = 𝑟 𝑝 𝑥, 𝑦 , so we want 𝑝 𝑟, 𝜃 =
𝑟

𝜋

𝑝𝑅 𝑟 = ∫0
2𝜋
𝑝 𝑟, 𝜃 𝑑𝜃 = 2𝑟 and 𝑝 𝜃|𝑟 =

𝑝(𝑟,𝜃)

𝑝𝑅(𝑟)
=

1

2𝜋

Rendering – Importance Sampling 73

Sampling the Unit Disk: The Formal Solution

If we create samples in polar coordinates for these PDFs, we will get
the uniform distribution in (𝑥, 𝑦) after applying transformation 𝑇

Rendering – Importance Sampling 74

𝑟

𝜃

Sampling the Unit Disk: The Formal Solution

Integrate marginal and conditional PDFs and
invert—we get the same solution as before:

𝑟 = P𝑅
−1 𝜉1 = 𝜉1

𝜃 = 𝑃Θ
−1 𝜉2 = 2𝜋𝜉2

𝑝 𝜃|𝑟 is constant: no matter what radius we are looking at, all
positions on a ring of that radius (angle) should be equally likely

Final integral: 𝑅𝐺𝐵𝑡𝑜𝑡𝑎𝑙 =
𝜋

𝑁
σ𝑖=1
𝑁 𝑅𝐺𝐵(𝑅𝑖 𝑠𝑖𝑛 Θ𝑖 , 𝑅𝑖 𝑐𝑜𝑠 Θ𝑖)

Rendering – Importance Sampling 75

Today’s Roadmap

Rendering – Importance Sampling 76

What exactly are CDFs and PDFs?

What is the inversion method?

How to sample arbitrary functions?

What’s the fastest way to cosine-

weighted hemisphere sampling?

The Inversion

Method

Sampling the

Unit Disk

Required

Background

(CDF, PDF)

Importance Sampling

for the Diffuse BRDF

Sampling the

Hemisphere

Importance

Sampling Unlocked!

Sampling the Unit Disk 2:

Crossing Domains

Moving on to the Hemisphere

This took as a while, but we have seen all the formal procedures

We only need to switch from integrating planar area to points 𝜔
on hemisphere surface (i.e., vectors 𝑥, 𝑦, 𝑧 with length 1)

Use spherical coordinates and bijective 𝑇 from (𝑟, 𝜃, 𝜙) to 𝑥, 𝑦, 𝑧 :
𝑥 = 𝑟 sin 𝜃 cos𝜙
𝑦 = 𝑟 sin 𝜃 sin𝜙
𝑧 = 𝑟 cos 𝜃

Rendering – Importance Sampling 77

Deriving Integration Over Hemisphere

Each direction 𝜔 represents an infinitesimal surface area portion 𝑑𝜔

How do we integrate a function 𝑓(𝜔) with differential 𝑑𝜔?

Integration over points on hemisphere surface 𝜔, w.r.t. (𝜃, 𝜙)

Rendering – Importance Sampling 78

𝜃

𝜙

𝜔
𝑑𝜔

𝑛

Deriving Integration Over Hemisphere

We assume a planar surface with an upright facing normal 𝑛

We use the integral intervals 𝜃 ∈ 0,
𝜋

2
, 𝜙 ∈ [0, 2𝜋)

I.e., a curve from perpendicular to parallel for 𝜃, a ring for 𝜙

Rendering – Importance Sampling 79

2𝜋

𝜋

2

𝑛

Deriving Integration Over Hemisphere

We can split the surface along 𝜃 into ribbons of width Δ𝜃 → 𝑑𝜃

The upper edge of the ribbon is slightly shorter than the lower

If we keep adding more and more ribbons, this difference vanishes

Rendering – Importance Sampling 80

Δ𝜃

Deriving Integration Over Hemisphere

As a ribbon’s width goes to 𝑑𝜃, its area becomes its length times 𝑑𝜃

We can find this length by projecting the ribbon to the ground

Using trigonometry, we find the length of a ribbon is 2𝜋sin 𝜃

Rendering – Importance Sampling 81

Deriving Integration Over Hemisphere

As a ribbon’s width goes to 𝑑𝜃, its area becomes its length times 𝑑𝜃

We can find this length by projecting the ribbon to the ground

Using basic trigonometry, we find the length of a ribbon is 2𝜋sin 𝜃

Rendering – Importance Sampling 82

sin 𝜃
𝜃

𝑛

cos 𝜃

The length of a ribbon spans the entire interval 𝜙 ∈ [0, 2𝜋)

Convert the length to an integral over 𝑑𝜙: 2𝜋sin 𝜃 = ∫0
2𝜋
sin 𝜃 𝑑𝜙

The final integral: ∫Ω𝑓 𝜔 𝑑𝜔 = ∫0

𝜋

2 ∫0
2𝜋
𝑓(𝜔) sin 𝜃 𝑑𝜙 𝑑𝜃

Deriving Integration Over Hemisphere

Rendering – Importance Sampling 83

𝜃

𝜙

𝜔
Δ𝜔

𝑛

Deriving PDF for Hemisphere Sampling

Integral of 𝑓(𝜔) over area Δ𝜔 = ∫Δ𝜔 𝑓(𝜔) 𝑑𝜔

Integral of 𝑓(𝜔) w.r.t. (𝑑𝜃, 𝑑𝜙) = ∫Δ𝜃 ∫Δ𝜙 𝑓 𝜔 sin 𝜃 𝑑𝜙 𝑑𝜃

Integration domain and 𝑓 𝜔 are identical, thus: 𝑑𝜔 = sin 𝜃 𝑑𝜙 𝑑𝜃

𝜔 ↔ 𝜃, 𝜙 is bijective, we have 𝑝 𝜃, 𝜙 d𝜃 𝑑𝜙 = 𝑝 𝜔 𝑑𝜔 and:

𝑝 𝜃, 𝜙 = sin 𝜃 𝑝 𝜔

Rendering – Importance Sampling 84

Δ𝜔
Δ𝜃

Deriving PDF for Hemisphere Sampling, the Formal Way

Target distribution in 𝜔, which is (𝑥, 𝑦, 𝑧) with x2 + 𝑦2 + 𝑧2 = 1

The transformation 𝑇 from (𝑟, 𝜃, 𝜙) to 𝑥, 𝑦, 𝑧 :
𝑥 = 𝑟 sin 𝜃 cos𝜙
𝑦 = 𝑟 sin 𝜃 sin𝜙
𝑧 = 𝑟 cos 𝜃

The Jacobian of the transformation 𝑇 gives 𝐽𝑇 = 𝑟2 sin 𝜃

𝑟 = 1, so we have 𝑝 1, 𝜃, 𝜙 = sin 𝜃 𝑝(𝑥, 𝑦, 𝑧) = sin 𝜃 𝑝(𝜔)

Rendering – Importance Sampling 85

Uniformly Sampling the Unit Hemisphere

The domain, i.e., the unit hemisphere surface area, is 2𝜋.

Uniformly sampling the domain over 𝜔 implies 𝑝 𝜔 =
1

2𝜋

Hence, since 𝑝 1, 𝜃, 𝜙 = sin 𝜃 𝑝 𝜔 , we want 𝑝 𝜃, 𝜙 =
sin 𝜃

2𝜋

Marginal density 𝑝Θ(𝜃): ∫0
2𝜋
𝑝 𝜃, 𝜙 𝑑𝜙 = sin 𝜃

Conditional density 𝑝 𝜙|𝜃 :
𝑝 𝜃,𝜙

𝑝Θ(𝜃)
=

1

2𝜋
Rendering – Importance Sampling 86

Uniformly Sampling the Unit Hemisphere – Complete

Antiderivative of 𝑝Θ(𝜃): ∫ sin 𝜃 𝑑𝜃 = 1 − cos 𝜃 (added constant 1)

Antiderivative of 𝑝 𝜙|𝜃 : ∫
1

2𝜋
𝑑𝜙 =

𝜙

2𝜋

Invert them to get 𝜃 = cos−1 𝜉1 (cos is symmetric), 𝜙 = 2𝜋𝜉2

Apply transformation 𝑇 on (𝜃, 𝜙) to obtain uniformly distributed 𝜔

Finally done!
Rendering – Importance Sampling 87

Today’s Roadmap

Rendering – Importance Sampling 88

What exactly are CDFs and PDFs?

What is the inversion method?

How to sample arbitrary functions?

What’s the fastest way to cosine-

weighted hemisphere sampling?

The Inversion

Method

Sampling the

Unit Disk

Required

Background

(CDF, PDF)

Importance Sampling

for the Diffuse BRDF

Sampling the

Hemisphere

Importance

Sampling Unlocked!

Sampling the Unit Disk 2:

Crossing Domains

Importance Sampling the Diffuse BRDF

Let‘s look once more at the reflected light in the rendering equation

When we bounce at a point 𝑥, we already know quite a bit:

If we use a diffuse BRDF, then 𝑓 𝑥, 𝜔 → 𝑣 is a constant factor
𝜌

𝜋

We can predict the cosine term—it depends on our choice of 𝜔

The tricky part, the big unknown, is the 𝐿 𝑥 ← 𝜔

Which directions will indirect light come from?

Rendering – Importance Sampling 89

න
Ω

𝑓𝑟 𝑥, 𝜔 → 𝑣 𝐿 𝑥 ← 𝜔 cos 𝜃𝜔 𝑑𝜔

𝑓(𝑥)

If we don‘t know anything about 𝐿, let‘s just assume a constant k

𝜌

𝜋
and 𝑘 are constant, so clearly,

𝜌

𝜋
𝑘 cos 𝜃𝜔 ∝ cos 𝜃𝜔

With these assumptions, the
integrand function is governed
entirely by the term 𝒄𝒐𝒔 𝜽 !

Importance Sampling the Diffuse BRDF

Rendering – Importance Sampling 90

න
Ω

𝜌

𝜋
𝑘 cos 𝜃𝜔 𝑑𝜔

𝜃

Importance Sampling the Diffuse BRDF

We know that the ideal distribution 𝑝(𝑥) for importance sampling a
function 𝑓 𝑥 is the one that minimizes variance, i.e., ∝ 𝑓 𝑥 itself

With the assumption of constant light from all directions, our
integrand 𝑓 𝑥 was simplified to something proportional to cos 𝜃

Idea: Importance-sample hemispheres
around hit points with diffuse materials
with distribution 𝑝 𝜔 ∝ cos 𝜃𝜔

Rendering – Importance Sampling 91

𝑛 𝑛

Uniform

hemisphere sampling

Cosine-weighted

hemisphere sampling

Cosine-Weighted Hemisphere Sampling?

In the first half, we saw how you can apply the inversion method for
sampling arbitrary distributions

In the second half, we were all about making sure that we can reach
our target distribution when we move from one domain to another

Cosine-weighted hemisphere sampling is a combination of the two

We have gone through all the necessary steps.
Try to solve this formally with the inversion method as an exercise!

Rendering – Importance Sampling 92

Cosine-Weighted Hemisphere Sampling!

Malley’s method: uniformly pick 𝑥, 𝑦 samples on the unit disk

Project them to the hemisphere surface 𝑧 = 1 − 𝑥2 − 𝑦2

𝑝 𝜔 =
cos 𝜃

𝜋

Done! Your samples are now
distributed with 𝑝 𝜔 ∝ cos 𝜃!
(Why? And why does this work? Try to find your own proof!)

Rendering – Importance Sampling 93

Importance Sampling the Diffuse BRDF

Rendering – Importance Sampling 94

AO, 64 samples, uniform hemisphere sampling AO, 64 samples, diffuse BRDF importance sampling

More Importance Sampling

The impact will be much greater when we add non-diffuse materials

BRDF functions can
be rather complex…

…but can often be
nicely approximated

You will want to sample with distributions more complex than cos 𝜃

Rendering – Importance Sampling 95

More Importance Sampling

Consider the modified Beckmann distribution for microfacet BRDFs

𝐷 𝜃, 𝜙 =
𝑒
− tan2 𝜃

𝛼2

𝜋𝛼2 cos3 𝜃

Yes, seriously!

Good luck with intuitive reasoning! Challenging, but doable task
with basic trigonometric identities and the inversion method!

Rendering – Importance Sampling 96

Importance Sampling the Full Rendering Equation

As you can imagine, this is a much more complex task

In fact, an enormous amount of research in rendering is actively
pursuing better and better ways to make this happen

Other sophisticated methods, like multiple importance sampling
(MIS), can be of great help here!

We will hear more about MIS in upcoming lectures…

Rendering – Importance Sampling 97

Importance Sampling Summary

If we do Monte Carlo integration of 𝑓(𝑥) , it’s best to use a sample
distribution 𝑝(𝑥) that closely mimics 𝑓(𝑥)

For a desired 𝑝 𝑥 ∝ 𝑓(𝑥), we can use the inversion method to get
the methods for generating samples and probability densities

If you cannot turn 𝑓(𝑥) into a valid PDF, try to find a close match

When we transform samples between domains, we have to make
sure they have the desired distribution in the target domain!

Rendering – Importance Sampling 98

Today’s Roadmap

Rendering – Importance Sampling 99

What exactly are CDFs and PDFs?

What is the inversion method?

How to sample arbitrary functions?

What’s the fastest way to cosine-

weighted hemisphere sampling?

The Inversion

Method

Sampling the

Unit Disk

Required

Background

(CDF, PDF)

Importance Sampling

for the Diffuse BRDF

Sampling the

Hemisphere

Importance

Sampling Unlocked!

Sampling the Unit Disk 2:

Crossing Domains

References and Further Reading

Slide set based mostly on chapter 13 of Physically Based Rendering: From Theory to Implementation

[1] Steven Strogatz, Infinite Powers: How Calculus Reveals the Secrets of the Universe

[2] Video, Why “probability of 0” does not mean “impossible” | Probabilities of probabilities, part 2:
https://www.youtube.com/watch?v=ZA4JkHKZM50

[3] Video, The determinant | Essence of linear algebra, chapter 6:
https://www.youtube.com/watch?v=Ip3X9LOh2dk

[4] SIGGRAPH 2012 Course: Advanced (Quasi-) Monte Carlo Methods for Image Synthesis,
https://sites.google.com/site/qmcrendering/

[5] Wikipedia, Volume Element, https://en.wikipedia.org/wiki/Volume_element

Rendering – Importance Sampling 100

https://www.youtube.com/watch?v=ZA4JkHKZM50
https://www.youtube.com/watch?v=Ip3X9LOh2dk
https://sites.google.com/site/qmcrendering/
https://en.wikipedia.org/wiki/Volume_element

