
Rendering: Path Tracing Basics

Bernhard Kerbl

Research Division of Computer Graphics

Institute of Visual Computing & Human-Centered Technology

TU Wien, Austria

Disclaimer and Errata

The following slides make heavy use of mathematical manipulations
and pseudo code snippets for demonstration purposes

It is quite easy to make mistakes when setting them up as slides

If you find any issues, please feel free to notify us!

The recorded version of this lecture will include an Errata section

Rendering – Path Tracing Basics 2

Today’s Goal

We combine the things we learned so far to make our first unbiased
path tracer for diffuse materials:

Light Physics

Monte Carlo Integration

The Rendering Equation

The Path Tracing Algorithm

Different iterations and considerations for performance

Introduce a dedicated BSDF/BRDF material data structure
Rendering – Path Tracing Basics 3

BSDF/BRDF..?

Bidirectional Scattering Distribution Function (BSDF) accounts for
the light transport properties of the hit material

Bidirectional Reflectance Distribution Function (BRDF) considers
only the reflection of incoming light onto a surface

Only diffuse materials for now, more in Materials lecture

Rendering – Path Tracing Basics 4

Material Types

We usually distinguish three basic material types
Perfectly diffuse (light is scattered equally in/from all directions)
Perfectly specular (light is reflected in/from exactly one direction)
Glossy (mixture of the other two, specular highlights)

Rendering – Path Tracing Basics 5

𝑛

𝑟𝑣𝑣

𝑛

𝑣

𝑛

𝑣 𝑟𝑣

𝑥𝑥𝑥

Diffuse Specular Glossy

Material Types

Rendering – Path Tracing Basics 6

Diffuse

We usually distinguish three basic material types
Perfectly diffuse (light is scattered equally in/from all directions)
Perfectly specular (light is reflected in/from exactly one direction)
Glossy (mixture of the other two, specular highlights)

What you will need

A basic scene with objects, some of which emit light

An output image to store color information in

A camera model in the scene for which you can make rays

E.g., with this detailed description by Scratchapixel

A function to trace rays through your scene and find the closest hit

E.g., using the famous Möller-Trumbore algorithm

Additional information for each hit point (normal, material, object)

So you can detect if an object was a light source, or

Use surface normals for computations

…
Rendering – Path Tracing Basics 7

https://www.scratchapixel.com/lessons/3d-basic-rendering/ray-tracing-generating-camera-rays/generating-camera-rays
https://en.wikipedia.org/wiki/M%C3%B6ller%E2%80%93Trumbore_intersection_algorithm

Today’s Roadmap

Rendering – Path Tracing Basics 8

What is indirect illumination?

How do multiple bounces work?

Can we add other effects too?

Direct Lighting

Path Tracing v1.0 Path Tracing v0.5

Rendering

Equation

Recap

BSDF Interface Sample

Distribution

Russian Roulette

Today’s Roadmap

Rendering – Path Tracing Basics 9

What is indirect illumination?

How do multiple bounces work?

Can we add other effects too?

Direct Lighting

Path Tracing v1.0 Path Tracing v0.5

Rendering

Equation

Recap

BSDF Interface Sample

Distribution

Russian Roulette

Recursive Rendering Equation, Recap

Rendering – Path Tracing Basics 10

Light going in
direction v

Light from
direction ω Solid angle

Material, modelled
by the BRDF

Light emitted from x
in direction v

Recursive Rendering Equation, Recap

Rendering – Path Tracing Basics 11

Light going in
direction v

Evaluate light from
direction ω recursively Solid angle

Material, modelled
by the BRDF

Light emitted from x
in direction v

Recursive Rendering Equation, Recap

To get the next bounce, we just evaluate this function recursively

Rendering – Path Tracing Basics 12

Today’s Roadmap

Rendering – Path Tracing Basics 13

What is indirect illumination?

How do multiple bounces work?

Can we add other effects too?

Direct Lighting

Path Tracing v1.0 Path Tracing v0.5

BSDF Interface Sample

Distribution

Russian Roulette

Rendering

Equation

Recap

We trace rays through a pixel that randomly bounce into the scene

Some will get lucky and hit light sources at first or second hit point!

Direct Lighting with the Rendering Equation

Rendering – Path Tracing Basics 14

Direct Lighting with the Rendering Equation

Let’s use the rendering equation to resolve direct light

Rendering – Path Tracing Basics 15

𝐿 𝑥 → 𝑣 = 𝐸 𝑥 → 𝑣 +න
Ω

𝑓 𝑥, 𝜔 → 𝑣 𝐿 𝑥 ← 𝜔 cos 𝜃𝜔 𝑑𝜔

𝑥

𝑣 𝜔

𝑦

Let’s simplify our notation a bit for our current scenario

Direct Lighting with the Rendering Equation

Rendering – Path Tracing Basics 16

𝑣 𝜔

𝐸 𝑥 → 𝑣 …... 𝐸𝑥

𝑓 𝑥, 𝜔 → 𝑣 ...
1

𝜋

𝑥

𝑦

𝐿 𝑥 → 𝑣 = 𝐸𝑥 +න
Ω

1

𝜋
𝐿 𝑥 ← 𝜔 cos 𝜃𝜔 𝑑𝜔

Let’s simplify our notation a bit for our current scenario

Direct Lighting with the Rendering Equation

Rendering – Path Tracing Basics 17

𝐿 𝑥 → 𝑣 = 𝐸𝑥 +න
Ω

1

𝜋
𝐿 𝑥 ← 𝜔 cos 𝜃𝜔 𝑑𝜔

𝑣 𝜔

Let’s expand this!

𝐸 𝑥 → 𝑣 …... 𝐸𝑥

𝑓 𝑥, 𝜔 → 𝑣 ...
1

𝜋

𝑥

𝑦

Direct Lighting with the Rendering Equation

If all we look for is direct lighting, then we stop after the first bounce

Rendering – Path Tracing Basics 18

𝑣 𝜔

𝐿 𝑥 → 𝑣 = 𝐸𝑥 +න
Ω

1

𝜋
(𝐸𝑦 +න

Ω′
…) cos 𝜃𝜔 𝑑𝜔

If we stop after one bounce,

then this becomes 0

𝑥

𝑦

Direct Lighting with the Rendering Equation

If all we look for is direct lighting, then we stop after the first bounce

Rendering – Path Tracing Basics 19

𝑣 𝜔

𝐿 𝑥 → 𝑣 = 𝐸𝑥 +න
Ω

1

𝜋
𝐸𝑦 cos 𝜃𝜔 𝑑𝜔

𝑥

𝑦

Direct Lighting with the Rendering Equation

Replace indefinite integral with Monte Carlo integral

Rendering – Path Tracing Basics 20

𝑣 𝜔𝑖

𝐿 𝑥 → 𝑣 = 𝐸𝑥 +
1

𝑁
෍

𝑖=1

𝑁
1

𝜋
𝐸𝑦 cos 𝜃𝜔𝑖

1

𝑝 𝜔𝑖

𝜔𝑖

𝜔𝑖

𝜔𝑖

𝑥

𝑦

A quick word on 𝜔 and 𝑝(𝜔)

Ensure for Monte Carlo integration that 𝜔 and 𝑝(𝜔) match

This can actually be quite tricky!

You can use uniform hemisphere sampling (we will derive it later)

For each 𝜔, draw two uniform random numbers 𝑥1, 𝑥2 in range [0, 1)

Calculate cos 𝜃 = 𝑥1, sin 𝜃 = 1 − cos2 𝜃

Calculate cos 𝜙 = cos 2𝜋𝑥2 , sin 𝜙 = sin(2𝜋𝑥2)

𝜔 = 𝑉𝑒𝑐𝑡𝑜𝑟3(cos 𝜙 sin 𝜃 , sin 𝜙 sin(𝜃), cos 𝜃)

𝑝 𝜔 =
1

2𝜋
(yes, always!)

Rendering – Path Tracing Basics 21

Bring 𝜔 into “world space”

Rendering – Path Tracing Basics 22

Resulting 𝜔 is in local coordinate frame: z axis is normal to surface

To intersect scene, rays will usually need to be in world space

Use coordinate transform between local and world[1]. Nori users:

From world space to local→ Intersection::toLocal()

From local to world space→ Intersection::shFrame::toWorld()

Pseudo Code for Direct Lighting of each Pixel (px, py)

v_inv = camera.gen_ray(px, py)

x = scene.trace(v_inv)

pixel_color = x.emit

f = 0

for (i = 0; i < N; i++)

omega_i, prob_i = hemisphere_uniform_world(x)

r = make_ray(x, omega_i)

y = scene.trace(r)

f += 1/pi * y.emit * dot(x.normal, omega_i) / prob_i

pixel_color += f/N

Rendering – Path Tracing Basics 23

𝐿 𝑥 → 𝑣 = 𝐸𝑥 +
1

𝑁
෍

𝑖=1

𝑁
1

𝜋
𝐸𝑦 cos 𝜃𝜔𝑖

1

𝑝 𝜔𝑖

Direct Lighting with the Rendering Equation

Success!

Rendering – Path Tracing Basics 24

𝑣 𝜔𝜔𝑖

𝜔𝑖

𝜔𝑖

𝜔𝑖

𝑥

𝑦

𝐿 𝑥 → 𝑣 = 𝐸𝑥 +
1

𝑁
෍

𝑖=1

𝑁
1

𝜋
𝐸𝑦 cos 𝜃𝜔𝑖

1

𝑝 𝜔𝑖

We can move the sum out…

for (i = 0; i < N; i++)

v_inv = camera.gen_ray(px, py)

x = scene.trace(v_inv)

f = x.emit

omega_i, prob_i = hemisphere_uniform_world(x)

r = make_ray(x, omega_i)

y = scene.trace(r)

f = 1/pi * y.emit * dot(x.normal, omega_i) / prob_i

pixel_color += f

pixel_color /= N

Rendering – Path Tracing Basics 25

𝐿 𝑥 → 𝑣 =
1

𝑁
෍

𝑖=1

𝑁

𝐸𝑥 +
1

𝜋
𝐸𝑦 cos 𝜃𝜔𝑖

1

𝑝 𝜔𝑖

…and call a function to compute color from the view ray

for (i = 0; i < N; i++)

v_inv = camera.gen_ray(px, py)

pixel_color += Li(v_inv)

pixel_color /= N

function Li(v_inv) // can be anything! Direct light, AO…

… // Must return a Monte Carlo f(x)/p(x)

Rendering – Path Tracing Basics 26

Note: In our test framework, Nori, the different integrators will implement different behaviors for Li. The main

loop over N takes care of the sum and the division by N, which are part of a Monte Carlo integral:

It is our job to write integrator functions that return
𝑓(𝑥)

𝑝(𝑥)
so the result will be a proper Monte Carlo integration.

1

𝑁
෍

𝑁
𝑓(𝑥)

𝑝(𝑥)

What if i don‘t hit anything in the scene?

Importance rays go on forever

In reality, sooner or later you would hit some sort of medium

In practice, your digital scene might just „end“

In that case, there are no follow-up bounces

Just return 0, or „black“

Rendering – Path Tracing Basics 27

Path Tracing

Just keep bouncing

…this one weird trick instantly makes your renderings prettier!

Today’s Roadmap

Rendering – Path Tracing Basics 29

What is indirect illumination?

How do multiple bounces work?

Can we add other effects too?

Direct Lighting

Path Tracing v1.0 Path Tracing v0.5

Rendering

Equation

Recap

BSDF Interface Sample

Distribution

Russian Roulette

Updating our Material Term

Before, we assumed diffuse, white material term
1

𝜋

If you have material information for your hit points, use that instead

Produce completely diffuse materials, but now with color

Assumed material information: albedo (diffuse RGB color) in [0, 1)

For each hit point, read out the albedo 𝜌

Now we will be using 𝑓𝑟 =
𝜌

𝜋
Rendering – Path Tracing Basics 30

Results from following view path over multiple bounces

Adam Celarek 31 source: own work

Indirect Illumination

Difficult in real-time graphics – comes naturally in path tracing!

Rendering – Path Tracing Basics 32

Let’s go one step further!

Indirect Lighting with the Rendering Equation

Rendering – Path Tracing Basics 33

𝑥

𝑣 𝜔

𝐸 𝑥 → 𝑣 …... 𝐸𝑥

𝑓 𝑥, 𝜔 → 𝑣 ... 𝑓𝑟

𝑥′

𝐿 𝑥 → 𝑣 = 𝐸𝑥 +න
Ω

𝑓𝑟 𝐿 𝑥 ← 𝜔 cos 𝜃𝜔 𝑑𝜔

Let’s go one step further!

Indirect Lighting with the Rendering Equation

Rendering – Path Tracing Basics 34

𝐿 𝑥 → 𝑣 = 𝐸𝑥 +න
Ω

𝑓𝑟 𝐿 𝑥 ← 𝜔 cos 𝜃𝜔 𝑑𝜔

𝑣 𝜔

Let’s expand this!

𝑥′′

𝜔′
𝑥

𝑥′

Let’s look at this new equation in detail…

Indirect Lighting with the Rendering Equation

Rendering – Path Tracing Basics 35

𝐿 𝑥 → 𝑣 = 𝐸𝑥 +න
Ω

𝑓𝑟 𝐸𝑥′ +න
Ω′
𝑓𝑟
′ 𝐿 𝑥′ ← 𝜔′ cos 𝜃𝜔′ 𝑑𝜔′ cos 𝜃𝜔 𝑑𝜔

𝑣 𝜔

𝜔′

𝑥′′

𝑥′

𝑥

A pattern emerges!

Indirect Lighting with the Rendering Equation

Rendering – Path Tracing Basics 36

𝑣 𝜔

𝜔′

𝑥′′

𝑥′

𝑥

𝐿 𝑥 → 𝑣 = 𝐸𝑥 +න
Ω

𝑓𝑟 𝐸𝑥′ +න
Ω′
𝑓𝑟
′ 𝐿 𝑥′ ← 𝜔′ cos 𝜃𝜔′ 𝑑𝜔′ cos 𝜃𝜔 𝑑𝜔

A real solution could go on much longer (ideally indefinitely)

Indirect Lighting with the Rendering Equation

Rendering – Path Tracing Basics 37

𝑣 𝜔

𝜔′ 𝜔′′

…

𝑥′′

𝑥′

𝑥

𝐿 𝑥 → 𝑣 = 𝐸𝑥 +න
Ω

𝑓𝑟 𝐸𝑥′ +න
Ω′
𝑓𝑟
′ … cos 𝜃𝜔′ 𝑑𝜔′ cos 𝜃𝜔 𝑑𝜔

Indirect Lighting with the Rendering Equation

With Monte Carlo integration, we might replace all ∫with ∑

Rendering – Path Tracing Basics 38

𝑣

𝜔j
′

…

𝑥′′

𝑥′

𝑥

𝜔𝑖 𝜔𝑘
′′

𝐿 𝑥 → 𝑣 = 𝐸𝑥 +
1

𝑁
෍

𝑖=1

𝑁

𝑓𝑟 𝐸𝑥′ +
1

𝑁
෍

𝑗=1

𝑁

𝑓𝑟
′ … cos 𝜃𝜔𝑗

′
1

𝑝(𝜔𝑗
′)

cos 𝜃𝜔𝑖

1

𝑝(𝜔𝑖)

Indirect Lighting with the Rendering Equation

With Monte Carlo integration, we might replace all ∫with ∑

Rendering – Path Tracing Basics 39

𝑣
…𝑥′

𝑥

𝜔𝑖

𝜔j
′ 𝜔𝑘

′′

𝑥′′

𝜔𝑖

𝜔𝑖

𝜔j
′

𝜔j
′

𝜔𝑘
′′

𝜔𝑘
′′

𝐿 𝑥 → 𝑣 = 𝐸𝑥 +
1

𝑁
෍

𝑖=1

𝑁

𝑓𝑟 𝐸𝑥′ +
1

𝑁
෍

𝑗=1

𝑁

𝑓𝑟
′ … cos 𝜃𝜔𝑗

′
1

𝑝(𝜔𝑗
′)

cos 𝜃𝜔𝑖

1

𝑝(𝜔𝑖)

Let’s implement this with recursion!

Rendering – Path Tracing Basics 40

v_inv = camera.gen_ray(px, py)

pixel_color = Li(v_inv)

function Li(v_inv)

x = scene.trace(v_inv)

f = 0

for (i = 0; i < N; i++)

omega_i, prob_i = hemisphere_uniform_world(x)

ray = make_ray(x, omega_i)

f += x.alb/pi * Li(ray) * dot(x.normal, omega_i) / prob_i

return x.emit + f/N

𝐿 𝑥 → 𝑣 = 𝐸𝑥 +
1

𝑁
෍

𝑖=1

𝑁

𝑓𝑟 𝐿 𝑥 ← 𝜔𝑖 cos 𝜃𝜔𝑖

1

𝑝(𝜔𝑖)

Each hemisphere integral computed with N samples (seems fair!)

Question: what to pick for N?

Let‘s start with something low

Like 4, 8, 16, 32

Let‘s see what we get…

Renderer never stops. We
need a stopping criterion!

Let‘s run it!

Rendering – Path Tracing Basics 41

Adding hard stopping criterion

Rendering – Path Tracing Basics 42

v_inv = camera.gen_ray(px, py)

pixel_color = Li(v_inv, 0)

function Li(v_inv, D)

if (D >= NUM_BOUNCES)

return 0

x = scene.trace(v_inv)

f = 0

for (i = 0; i < N; i++)

omega_i, prob_i = hemisphere_uniform_world(x)

ray = make_ray(x, omega_i)

f += x.alb/pi * Li(ray, D+1) * dot(x.normal, omega_i) / prob_i

return x.emit + f/N

Let‘s run this again!

NUM_BOUNCES = 3

Samples for each sum and runtime

Rendering – Path Tracing Basics 43

N Time

4 3s

8

16

32

Let‘s run this again!

NUM_BOUNCES = 3

Samples for each sum and runtime

Rendering – Path Tracing Basics 44

N Time

4 3s

8 22s

16

32

Let‘s run this again!

NUM_BOUNCES = 3

Samples for each sum and runtime

Rendering – Path Tracing Basics 45

N Time

4 3s

8 22s

16 3m 33s

32

Let‘s run this again!

NUM_BOUNCES = 3

Samples for each sum and runtime

Rendering – Path Tracing Basics 46

N Time

4 3s

8 22s

16 3m 33s

32 43m 20s

Wisdom of the Day

The more samples, the better

…and also slower

Today’s Roadmap

Rendering – Path Tracing Basics 48

What is indirect illumination?

How do multiple bounces work?

Can we add other effects too?

Direct Lighting

Path Tracing v1.0 Path Tracing v0.5

Rendering

Equation

Recap

BSDF Interface Sample

Distribution

Russian Roulette

It‘s time to reconsider our approach

It works, but it‘s slow and the quality is not great

Also, this was only 3 bounces

Advanced effects can require much more than that!

Were we too naive, is path tracing doomed?

Definitely no!

There‘s a vast range of tools we can use to raise performance

Rendering – Path Tracing Basics 49

We can write this one big integral slightly differently

Reconsidering Sample Distribution

Rendering – Path Tracing Basics 50

𝐿 𝑥 → 𝑣 = 𝐸𝑥

+න
Ω

𝑓𝑟 𝐸𝑥′ cos 𝜃𝜔 𝑑𝜔

+න
Ω

𝑓𝑟න
Ω′
𝑓𝑟
′ 𝐸𝑥′′ cos 𝜃𝜔′ cos 𝜃𝜔 𝑑𝜔′𝑑𝜔

+න
Ω

𝑓𝑟න
Ω′
𝑓𝑟
′න

Ω′′
𝑓𝑟
′′ 𝐸𝑥′′′ 𝑐𝑜𝑠(𝜃𝜔′′)cos 𝜃𝜔′ cos 𝜃𝜔 𝑑𝜔′′𝑑𝜔′𝑑𝜔

+ …

𝐿 𝑥 → 𝑣 = 𝐸𝑥 +න
Ω

𝑓𝑟 𝐸𝑥′ +න
Ω′
𝑓𝑟
′ … cos 𝜃𝜔′ 𝑑𝜔′ cos 𝜃𝜔 𝑑𝜔

𝐿 𝑥 → 𝑣 = 𝐸𝑥

+න
Ω

𝑓𝑟 𝐸𝑥′ cos 𝜃𝜔 𝑑𝜔

+න
Ω

𝑓𝑟න
Ω′
𝑓𝑟
′ 𝐸𝑥′′ cos 𝜃𝜔′ cos 𝜃𝜔 𝑑𝜔′𝑑𝜔

+න
Ω

𝑓𝑟න
Ω′
𝑓𝑟
′න

Ω′′
𝑓𝑟
′′ 𝐸𝑥′′′ 𝑐𝑜𝑠(𝜃𝜔′′)cos 𝜃𝜔′ cos 𝜃𝜔 𝑑𝜔′′𝑑𝜔′𝑑𝜔

+ …

We can write this one big integral slightly differently

Reconsidering Sample Distribution

Rendering – Path Tracing Basics 51

Can you guess what

each of these lines does

for our final image?

𝐿 𝑥 → 𝑣 = 𝐸𝑥 +න
Ω

𝑓𝑟 𝐸𝑥′ +න
Ω′
𝑓𝑟
′ … cos 𝜃𝜔′ 𝑑𝜔′ cos 𝜃𝜔 𝑑𝜔

Reconsidering Sample Distribution

Rendering – Path Tracing Basics 52

𝐿 𝑥 → 𝑣 = 𝐸𝑥

+න
Ω

𝑓𝑟 𝐸𝑥′ cos 𝜃𝜔 𝑑𝜔

+න
Ω

𝑓𝑟න
Ω′
𝑓𝑟
′ 𝐸𝑥′′ cos 𝜃𝜔′ cos 𝜃𝜔 𝑑𝜔′𝑑𝜔

+න
Ω

𝑓𝑟න
Ω′
𝑓𝑟
′න

Ω′′
𝑓𝑟
′′ 𝐸𝑥′′′ 𝑐𝑜𝑠(𝜃𝜔′′)cos 𝜃𝜔′ cos 𝜃𝜔 𝑑𝜔′′𝑑𝜔′𝑑𝜔

+ …

Reconsidering Sample Distribution

Rendering – Path Tracing Basics 53

𝐿 𝑥 → 𝑣 = 𝐸𝑥

+න
Ω

𝑓𝑟 𝐸𝑥′ cos 𝜃𝜔 𝑑𝜔

+න
Ω

𝑓𝑟න
Ω′
𝑓𝑟
′ 𝐸𝑥′′ cos 𝜃𝜔′ cos 𝜃𝜔 𝑑𝜔′𝑑𝜔

+න
Ω

𝑓𝑟න
Ω′
𝑓𝑟
′න

Ω′′
𝑓𝑟
′′ 𝐸𝑥′′′ 𝑐𝑜𝑠(𝜃𝜔′′)cos 𝜃𝜔′ cos 𝜃𝜔 𝑑𝜔′′𝑑𝜔′𝑑𝜔

+ …

Reconsidering Sample Distribution

Rendering – Path Tracing Basics 54

𝐿 𝑥 → 𝑣 = 𝐸𝑥

+න
Ω

𝑓𝑟 𝐸𝑥′ cos 𝜃𝜔 𝑑𝜔

+න
Ω

𝑓𝑟න
Ω′
𝑓𝑟
′ 𝐸𝑥′′ cos 𝜃𝜔′ cos 𝜃𝜔 𝑑𝜔′𝑑𝜔

+න
Ω

𝑓𝑟න
Ω′
𝑓𝑟
′න

Ω′′
𝑓𝑟
′′ 𝐸𝑥′′′ 𝑐𝑜𝑠(𝜃𝜔′′)cos 𝜃𝜔′ cos 𝜃𝜔 𝑑𝜔′′𝑑𝜔′𝑑𝜔

+ …

Reconsidering Sample Distribution

Rendering – Path Tracing Basics 55

𝐿 𝑥 → 𝑣 = 𝐸𝑥

+න
Ω

𝑓𝑟 𝐸𝑥′ cos 𝜃𝜔 𝑑𝜔

+න
Ω

𝑓𝑟න
Ω′
𝑓𝑟
′ 𝐸𝑥′′ cos 𝜃𝜔′ cos 𝜃𝜔 𝑑𝜔′𝑑𝜔

+න
Ω

𝑓𝑟න
Ω′
𝑓𝑟
′න

Ω′′
𝑓𝑟
′′ 𝐸𝑥′′′ 𝑐𝑜𝑠(𝜃𝜔′′)cos 𝜃𝜔′ cos 𝜃𝜔 𝑑𝜔′′𝑑𝜔′𝑑𝜔

+ …

We used more samples for the contributions from longer light paths

The return-on-investment is not that great!

Reconsidering Sample Distribution

Rendering – Path Tracing Basics 56

1 sample N samples N² samples N³ samples

We have seen a different way of writing these results last time

The path integral form used a single integral for each bounce!

Reconsidering Sample Distribution

Rendering – Path Tracing Basics 57

𝐿 𝑥 → 𝑣 = 𝐸𝑥

+න
Ω

𝑓𝑟 𝐸𝑥′ cos 𝜃𝜔 𝑑𝜔

+න
Ω

𝑓𝑟න
Ω′
𝑓𝑟
′ 𝐸𝑥′′ cos 𝜃𝜔′ cos 𝜃𝜔 𝑑𝜔′𝑑𝜔

+න
Ω

𝑓𝑟න
Ω′
𝑓𝑟
′න

Ω′′
𝑓𝑟
′′ 𝐸𝑥′′′ 𝑐𝑜𝑠(𝜃𝜔′′)cos 𝜃𝜔′ cos 𝜃𝜔 𝑑𝜔′′𝑑𝜔′𝑑𝜔

+ …

We have seen a different way of writing these results last time

The path integral form used a single integral for each bounce!

Reconsidering Sample Distribution

Rendering – Path Tracing Basics 58

𝐿 𝑥 → 𝑣 = 𝐸𝑥

+න
Ω1

𝑓𝑟 𝐸𝑥′ cos 𝜃𝜔 𝑑𝜇(ҧ𝑥)

+න
Ω2

𝑓𝑟 𝑓𝑟
′𝐸𝑥′′ cos 𝜃𝜔′ cos 𝜃𝜔 𝑑𝜇(ҧ𝑥)

+න
Ω3

𝑓𝑟𝑓𝑟
′𝑓𝑟

′′ 𝐸𝑥′′′ 𝑐𝑜𝑠(𝜃𝜔′′)cos 𝜃𝜔′ cos 𝜃𝜔 𝑑𝜇(ҧ𝑥)

+ … fj(ҧ𝑥)

Let’s replace each integral with Monte Carlo integration again

Reconsidering Sample Distribution

Rendering – Path Tracing Basics 59

𝐿 𝑥 → 𝑣 = 𝐸𝑥

+
1

𝑁
෍

𝑖=1

𝑁

𝑓𝑟 𝐸𝑥′ cos 𝜃𝜔
1

𝑝(𝜔)

+
1

𝑁
෍

𝑖=1

𝑁

𝑓𝑟 𝑓𝑟
′𝐸𝑥′′ cos 𝜃𝜔′ cos 𝜃𝜔

1

𝑝 𝜔 𝑝(𝜔′)

+
1

𝑁
෍

𝑖=1

𝑁

𝑓𝑟𝑓𝑟
′𝑓𝑟

′′ 𝐸𝑥′′′ 𝑐𝑜𝑠(𝜃𝜔′′)cos 𝜃𝜔′ cos 𝜃𝜔
1

𝑝 𝜔 𝑝 𝜔′ 𝑝(𝜔′′)

+ …

We use the same number of samples for all light paths

No more exponential sample growth!

Our new sample distribution

Rendering – Path Tracing Basics 60

N samples N samples N samples N samples

Let’s replace each integral with Monte Carlo integration again

Reconsidering Sample Distribution

Rendering – Path Tracing Basics 61

𝐿 𝑥 → 𝑣 = 𝐸𝑥

+
1

𝑁
෍

𝑖=1

𝑁

𝑓𝑟 𝐸𝑥′ cos 𝜃𝜔
1

𝑝(𝜔)

+
1

𝑁
෍

𝑖=1

𝑁

𝑓𝑟 𝑓𝑟
′𝐸𝑥′′ cos 𝜃𝜔′ cos 𝜃𝜔

1

𝑝 𝜔 𝑝(𝜔′)

+
1

𝑁
෍

𝑖=1

𝑁

𝑓𝑟𝑓𝑟
′𝑓𝑟

′′ 𝐸𝑥′′′ 𝑐𝑜𝑠(𝜃𝜔′′)cos 𝜃𝜔′ cos 𝜃𝜔
1

𝑝 𝜔 𝑝 𝜔′ 𝑝(𝜔′′)

+ …

We can again pull the sum to the front…

Reconsidering Sample Distribution

Rendering – Path Tracing Basics 62

𝐿 𝑥 → 𝑣 =
1

𝑁
෍

𝑖=1

𝑁

(𝐸𝑥

+𝑓𝑟𝐸𝑥′ cos 𝜃𝜔
1

𝑝(𝜔)

+𝑓𝑟𝑓𝑟
′𝐸𝑥′′ cos 𝜃𝜔′ cos 𝜃𝜔

1

𝑝 𝜔 𝑝(𝜔′)

+𝑓𝑟𝑓𝑟
′𝑓𝑟

′′𝐸𝑥′′′ 𝑐𝑜𝑠(𝜃𝜔′′)cos 𝜃𝜔′ cos 𝜃𝜔
1

𝑝 𝜔 𝑝 𝜔′ 𝑝(𝜔′′)
+ …)

…and rewrite to highlight the original recursion

We are back to a single sum for integration with recursion!

This also fits perfectly with our main loop and interface design

Reconsidering Sample Distribution

Rendering – Path Tracing Basics 63

𝐿 𝑥 → 𝑣 =
1

𝑁
෍

𝑖=1

𝑁

𝐸𝑥 + 𝑓𝑟 𝐸𝑥′ + 𝑓𝑟
′ … cos 𝜃𝜔′

1

𝑝 𝜔′
cos 𝜃𝜔

1

𝑝 𝜔

Path Tracing with a Single Sum

for (i = 0; i < N; i++)

v_inv = camera.gen_ray(px, py)

pixel_color += Li(v_inv, 0)

pixel_color /= N

function Li(v_inv, D)

if (D >= NUM_BOUNCES)

return 0

x = scene.trace(v_inv)

f = x.emit

omega, prob = hemisphere_uniform_world(x)

r = make_ray(x, omega)

f += x.alb/pi * Li(r, D+1) * dot(x.normal, omega)/prob

return f

Rendering – Path Tracing Basics 64

𝐿 𝑥 → 𝑣 =
1

𝑁
෍

𝑖=1

𝑁

𝐸𝑥 + 𝑓𝑟 … cos 𝜃𝜔
1

𝑝 𝜔

Path Tracing with a Single Sum

for (i = 0; i < N; i++)

v_inv = camera.gen_ray(px, py)

pixel_color += Li(v_inv, 0)

pixel_color /= N

function Li(v_inv, D)

if (D >= NUM_BOUNCES)

return 0

x = scene.trace(v_inv)

f = x.emit

omega, prob = hemisphere_uniform_world(x)

r = make_ray(x, omega)

f += x.alb/pi * Li(r, D+1) * dot(x.normal, omega)/prob

return f

Rendering – Path Tracing Basics 65

𝐿 𝑥 → 𝑣 =
1

𝑁
෍

𝑖=1

𝑁

𝐸𝑥 + 𝑓𝑟 … cos 𝜃𝜔
1

𝑝 𝜔

Path Tracing with a Single Sum

for (i = 0; i < N; i++)

v_inv = camera.gen_ray(px, py)

pixel_color += Li(v_inv, 0)

pixel_color /= N

function Li(v_inv, D)

if (D >= NUM_BOUNCES)

return 0

x = scene.trace(v_inv)

f = x.emit

omega, prob = hemisphere_uniform_world(x)

r = make_ray(x, omega)

f += x.alb/pi * Li(r, D+1) * dot(x.normal, omega)/prob

return f

Rendering – Path Tracing Basics 66

𝐿 𝑥 → 𝑣 =
1

𝑁
෍

𝑖=1

𝑁

𝐸𝑥 + 𝑓𝑟 … cos 𝜃𝜔
1

𝑝 𝜔

Path Tracing with a Single Sum

for (i = 0; i < N; i++)

v_inv = camera.gen_ray(px, py)

pixel_color += Li(v_inv, 0)

pixel_color /= N

function Li(v_inv, D)

if (D >= NUM_BOUNCES)

return 0

x = scene.trace(v_inv)

f = x.emit

omega, prob = hemisphere_uniform_world(x)

r = make_ray(x, omega)

f += x.alb/pi * Li(r, D+1) * dot(x.normal, omega)/prob

return f

Rendering – Path Tracing Basics 67

𝐿 𝑥 → 𝑣 =
1

𝑁
෍

𝑖=1

𝑁

𝐸𝑥 + 𝑓𝑟 … cos 𝜃𝜔
1

𝑝 𝜔

Path Tracing with a Single Sum

for (i = 0; i < N; i++)

v_inv = camera.gen_ray(px, py)

pixel_color += Li(v_inv, 0)

pixel_color /= N

function Li(v_inv, D)

if (D >= NUM_BOUNCES)

return 0

x = scene.trace(v_inv)

f = x.emit

omega, prob = hemisphere_uniform_world(x)

r = make_ray(x, omega)

f += x.alb/pi * Li(r, D+1) * dot(x.normal, omega)/prob

return f

Rendering – Path Tracing Basics 68

𝐿 𝑥 → 𝑣 =
1

𝑁
෍

𝑖=1

𝑁

𝐸𝑥 + 𝑓𝑟 … cos 𝜃𝜔
1

𝑝 𝜔

Path Tracing with a Single Sum

for (i = 0; i < N; i++)

v_inv = camera.gen_ray(px, py)

pixel_color += Li(v_inv, 0)

pixel_color /= N

function Li(v_inv, D)

if (D >= NUM_BOUNCES)

return 0

x = scene.trace(v_inv)

f = x.emit

omega, prob = hemisphere_uniform_world(x)

r = make_ray(x, omega)

f += x.alb/pi * Li(r, D+1) * dot(x.normal, omega)/prob

return f

Rendering – Path Tracing Basics 69

𝐿 𝑥 → 𝑣 =
1

𝑁
෍

𝑖=1

𝑁

𝐸𝑥 + 𝑓𝑟 … cos 𝜃𝜔
1

𝑝 𝜔

Path Tracing Implementations – Comparison

Rendering – Path Tracing Basics 70

3 bounces, 1 sum, N = 2048 3 bounces, 3 nested sums, N = 16

Wisdom of the Day

Your samples are precious

…put them where they matter!

How many bounces are enough?

Remember: if we want to be physically correct, then we must
consider all possible light paths (i.e., journeys of photons)

Photons stop bouncing when they have been entirely absorbed

Problem: no real-world material absorbs 100% of incoming light

No matter how many bounces, the probability might never go to
absolute zero → so we should never stop?

Rendering – Path Tracing Basics 72

Today’s Roadmap

Rendering – Path Tracing Basics 73

What is indirect illumination?

How do multiple bounces work?

Can we add other effects too?

Direct Lighting

Path Tracing v1.0 Path Tracing v0.5

Rendering

Equation

Recap

BSDF Interface Sample

Distribution

Russian Roulette

How do we handle infinity?

In many cases, most contribution comes from the first few bounces

Can we exploit this fact and make long paths possible, but unlikely?

Rendering – Path Tracing Basics 74

Number of bounces

N samples N samples N samples N samples N samples

How do we handle infinity?

In many cases, most contribution comes from the first few bounces

Can we exploit this fact and make long paths possible, but unlikely?

Rendering – Path Tracing Basics 75

Number of bounces

N samples N samples N samples <N samples? ≪N samples?

Russian Roulette (RR)

Pick 0 < 𝑝𝑅𝑅 < 1. Draw uniform random value 𝑥 in [0, 1) to decide

𝑥 < 𝑝𝑅𝑅: keep going for another bounce

𝑥 ≥ 𝑝𝑅𝑅: end path

The longer a path goes on, the more likely it is to get terminated

The probability of a ray surviving the 𝐷𝑡ℎ bounce is 𝑝𝑅𝑅
𝐷

Whenever a path continues with another bounce, compensate for

its (un)-likeliness by weighting the returned color from 𝐿𝑖 with
1

𝑝𝑅𝑅
Rendering – Path Tracing Basics 76

Both objects emit light

Very aggressive RR

Assume fixed 𝑝𝑅𝑅 =
1

5

Most paths (
4

5
) fail to

capture the pink sphere

The Logic behind Russian Roulette

Rendering – Path Tracing Basics 77

Both objects emit light

Very aggressive RR

Assume fixed 𝑝𝑅𝑅 =
1

5

Most paths (
4

5
) fail to

capture the pink sphere

The Logic behind Russian Roulette

Rendering – Path Tracing Basics 78

Both objects emit light

Very aggressive RR

Assume fixed 𝑝𝑅𝑅 =
1

5

When we do hit it, the
division by 𝑝 compensates
for times where we missed it

The Logic behind Russian Roulette

Rendering – Path Tracing Basics 79

x5

x5

…

Both objects emit light

Very aggressive RR

Assume fixed 𝑝𝑅𝑅 =
1

5

The rarity (and multiplier)
of later bounces is growing
continuously!

The Logic behind Russian Roulette

Rendering – Path Tracing Basics 80

x5

…
x5

…
x5

…
x5

…
x25

In code, you might be tempted to use
1

𝑝𝑅𝑅
𝐷 to compensate for RR

Don‘t!
1

𝑝𝑅𝑅
is enough for each individual bounce!

If you use the recursive implementation, your effective RR
compensation will grow with each bounce, all by itself…

Maybe look at pseudocode and ponder the previous slide for a bit

Russian Roulette Recursion Trap

Rendering – Path Tracing Basics 81

Russian Roulette Implementation

for (i = 0; i < N; i++)

v_inv = camera.gen_ray(px, py)

pixel_color += Li(v_inv, 0)

pixel_color /= N

function Li(v_inv, D)

…

f = x.emit

…

rr_prob = Some value between 0 and 1

if (uniform_random_value() >= rr_prob) // This path ends here

return f

…

f += x.alb/pi * Li(r, D+1) * dot(x.normal, omega) / (prob * rr_prob)

return f

Rendering – Path Tracing Basics 82

Russian Roulette..?

“…but if the possibility for infinitely long paths remains, doesn’t that
mean that my renderer may take forever to finish?”

Almost certainly no

In practice, if you choose an adequate 𝑝𝑅𝑅, you are more likely to
get struck by lightning while reading this than that ever happening

“Ok, cool, so the lower I choose 𝑝𝑅𝑅, the better, right? Can we just
take something really small?” Well, not exactly.

Rendering – Path Tracing Basics 83

High 𝑝𝑅𝑅 vs low 𝑝𝑅𝑅, same number of samples

Rendering – Path Tracing Basics 84

𝑝𝑅𝑅 = 0.7: 50 seconds 𝑝𝑅𝑅 = 0.1: 35 seconds

High 𝑝𝑅𝑅 vs low 𝑝𝑅𝑅, same number of samples

Rendering – Path Tracing Basics 85

𝑝𝑅𝑅 = 0.7: 50 seconds 𝑝𝑅𝑅 = 0.1: 35 seconds

High 𝑝𝑅𝑅 vs low 𝑝𝑅𝑅, different number of samples

Rendering – Path Tracing Basics 86

𝑝𝑅𝑅 = 0.7: 50 seconds 𝑝𝑅𝑅 = 0.1, 4x as many samples: 150 seconds

High 𝑝𝑅𝑅 vs low 𝑝𝑅𝑅, different number of samples

Rendering – Path Tracing Basics 87

𝑝𝑅𝑅 = 0.7: 50 seconds 𝑝𝑅𝑅 = 0.1, 4x as many samples: 150 seconds

If 𝑝(𝑥) is low, but 𝑓(𝑥) is not → high contribution of rare events!

These “fireflies” tend to stick around!

Choose 𝑝𝑅𝑅 dynamically: compute it
at each bounce according to possible
color contribution („throughput“)

Fireflies and Throughput

Rendering – Path Tracing Basics 88

𝑝𝑅𝑅 = max
RGB

ෑ

𝑑=1

𝐷−1
𝑓𝑟 𝑥𝑑 , 𝜔𝑑 → 𝑣𝑑 cos 𝜃𝑑

𝑝 𝜔𝑑 𝑝𝑅𝑅𝑑

𝑝𝑅𝑅 = 0.01

𝑝𝑅𝑅 = 0.5

𝑝𝑅𝑅 = 1.0

𝑝𝑅𝑅 = 1.0

𝑝𝑅𝑅 = 1.0

𝑝𝑅𝑅 = 1.0

Keeping track of throughput (recursive)

for (i = 0; i < N; i++)

v_inv = camera.gen_ray(px, py)

pixel_color += Li(v_inv, 0, 1)

pixel_color /= N

function Li(v_inv, D, throughput)

…

rr_prob = max_coefficient(throughput) // Throughput is RGB

…

brdf = x.alb/pi

cosTheta = dot(x.normal, omega)

throughput *= brdf * cosTheta / (prob * rr_prob)

…

f += brdf * Li(r, D+1, throughput) * cosTheta / (prob * rr_prob)

return f

Rendering – Path Tracing Basics 89

Use guaranteed minimal path length before Russian Roulette starts

E.g., no Russian Roulette before the third bounce

Preserves a minimal path length for indirect illumination

Guaranteed bounces have 𝑝 = 1 always

Some materials absorb barely any incoming light (mirrors!)

Imagine two mirrors opposite of each other

Ray may bounce between them forever

Bad: limit bounces to a strict maximum

Better: clamp 𝑝𝑅𝑅 to a value < 1, e.g. 0.99

Russian Roulette Implementation Details

Rendering – Path Tracing Basics 90

Sample Distribution in Production Renderers

In practice, the distribution of samples is usually more dynamic:

Especially bounce 1 (direct light/shadows) receives more attention

Rendering – Path Tracing Basics 91

Number of bounces

medium high medium low lower

You can interpret the 𝑝𝑅𝑅 as an additional factor to MC integral

Originally, we divided by 𝑝 𝜔 to account for two things:

Scaling to approximate the whole domain (i.e., entire hemisphere)

Different probabilities of 𝜔 (not a factor with uniform sampling)
2

3

Choosing and Compensating

Rendering – Path Tracing Basics 92

Choosing and Compensating

Probability density of following a particular 𝜔 changes to 𝑝 𝜔 𝑝𝑅𝑅
Compensate for the fact that sometimes we chose to stop

Weight rare events higher (e.g., many bounces off dark materials)

We have to compensate whenever we pick one of multiple options

This is usually the case when you draw a random variable to decide
on choosing one option and not the others

Rendering – Path Tracing Basics 93

Choosing and Compensating

Another example: picking a light source for light source sampling

For light source sampling, you can sample them all or just pick one

If you do pick only one, must compensate for making that choice!

Simplest: pick uniformly, multiply result by number of lights (why?)

Rendering – Path Tracing Basics 94

Wisdom of the Day

Monte Carlo is all about picking samples and then compensating

…and if you pick your samples carefully, we call it importance sampling

Today’s Roadmap

Rendering – Path Tracing Basics 96

What is indirect illumination?

How do multiple bounces work?

Can we add other effects too?

Direct Lighting

Path Tracing v1.0 Path Tracing v0.5

Rendering

Equation

Recap

BSDF Interface Sample

Distribution

Russian Roulette

Materials and the BSDF

We made a path tracer for diffuse materials, and diffuse only

Rendering – Path Tracing Basics 97

𝑛

𝑣

𝑥

Reflection Behavior Appearance

Capturing Path Behavior in a BSDF Data Structure

We made a solution that works, but only for diffuse materials

There are a lot of exciting other options

Specular

Glossy

…

Path tracer should allow adding materials without rewriting it all

Encapsulate material-dependent rendering factors in BSDF class
Rendering – Path Tracing Basics 98

Material-Dependent Factors

function Li(v_inv, D, throughput)

…

omega, prob = hemisphere_uniform_world(x)

…

brdf = x.alb/pi

throughput *= brdf * cosTheta / (prob * rr_prob)

…

f += brdf * Li(r, D+1, throughput) * cosTheta / (prob * rr_prob)

…

Rendering – Path Tracing Basics 99

function Li(v_inv, D, throughput)

…

omega, prob = hemisphere_uniform_world(x)

…

brdf = x.alb/pi

throughput *= brdf * cosTheta / (prob * rr_prob)

…

f += brdf * Li(r, D+1, throughput) * cosTheta / (prob * rr_prob)

…

Material-Dependent Factors

Rendering – Path Tracing Basics 100

Some materials will reflect incoming light

entirely in one single direction (mirrors).

Sampling the hemisphere in this case is

pointless! Also: we might be able to do

something smarter than uniform sampling

function Li(v_inv, D, throughput)

…

omega, prob = hemisphere_uniform_world(x)

…

brdf = x.alb/pi

throughput *= brdf * cosTheta / (prob * rr_prob)

…

f += brdf * Li(r, D+1, throughput) * cosTheta / (prob * rr_prob)

…

Material-Dependent Factors

Rendering – Path Tracing Basics 101

Super simple term that never

changes. Obviously, this only

makes sense if the amount of

reflected light is the same in all

directions, independent of 𝑣 and

𝜔 . Only a fully diffuse BSDF

gets away with this.

function Li(v_inv, D, throughput)

…

omega, prob = hemisphere_uniform_world(x)

…

brdf = x.alb/pi

throughput *= brdf * cosTheta / (prob * rr_prob)

…

f += brdf * Li(r, D+1, throughput) * cosTheta / (prob * rr_prob)

…

Material-Dependent Factors

Rendering – Path Tracing Basics 102

For some materials, like glass, this

cosine term is not needed, cancels

out or has to be removed for

reasons of energy conservation.

function Li(v_inv, D, throughput)

…

omega, prob = hemisphere_uniform_world(x)

…

brdf = x.alb/pi

throughput *= brdf * cosTheta / (prob * rr_prob)

…

f += brdf * Li(r, D+1, throughput) * cosTheta / (prob * rr_prob)

…

Material-Dependent Factors

Rendering – Path Tracing Basics 103

Many issues! Example: we could

have perfect mirrors that only

reflect in a single direction. Hence

the probability of other directions

is 0. Danger of division by 0!

Implement Basic Diffuse BRDFs with BSDF Interface

Nori BSDF class has three methods: eval, pdf, sample

Use auxiliary struct parameter bRec to pass 𝑣 (.wi) and 𝜔 (.wo)

eval(bRec): evaluate material‘s ability to reflect light from 𝜔 to 𝑣

pdf(bRec) : compute the relative probability of sampling direction 𝜔

sample(bRec): make & store 𝜔 in bRec, compute material multiplier

Rendering – Path Tracing Basics 104

𝑛𝑣

𝜔

Implement Basic Diffuse BRDFs with BSDF Interface

Nori BSDF class has three methods: eval, pdf, sample

Use auxiliary struct parameter bRec to pass 𝑣 (.wi) and 𝜔 (.wo)

eval(bRec): return
𝜌

𝜋
if 𝑣, 𝜔 lie in hemisphere around 𝑛 (diffuse)

pdf(bRec) : return
1

2𝜋
if 𝜔 lies in hemisphere around 𝑛 (all 𝜔 equal)

sample(bRec): create uniform 𝜔, return(cos 𝜃 ⋅ eval())/pdf()

Rendering – Path Tracing Basics 105

𝑛𝑣

𝜔

Using the New BSDF Class in Path Tracing Code

Isolates material-specific factor computations in a single function

Simplifies code and will make extension with other materials easy

function Li(v_inv, D, throughput)

…

omega, brdf_multiplier = sample(x, v_inv)

…

throughput *= brdf_multiplier / rr_prob

…

f += brdf_multiplier * Li(r, D+1, throughput) / rr_prob

…

Rendering – Path Tracing Basics 106

Path-Tracing is Multidimensional

We already know some of them:

Constructing a new ray after each bounce (2𝐷)

Evaluating RR continuation probability (𝐷)

…

Other possible choices we have not yet considered:

Lens coordinates (for depth-of-field) (2)

Time (for motion blur) (1)

…

Rendering – Path Tracing Basics 107

Depth-of-Field

Rendering – Path Tracing Basics 108

Simulate the behavior of camera lenses

Depending on shape, focal length and
aperture, lenses have limited distance
range in which objects appear sharp

If they are closer or farther away,
they cause a blurry „circle of confusion“

Can be used to highlight objects of interest

M
ix

e
d

 i
n

/o
u

t
o

f
fo

c
u

s

O
u

t
o

f
fo

c
u

s

Depth-of-Field in Path Tracing

Can simulate depth-of-field for a thin lens with focal length 𝑓[2]

Create camera ray 𝑟 through pixel as before

Find focal point 𝒇 along 𝑟 at distance 𝑓

Pick random location 𝑥, 𝑦 on the lens
(2D disk) inside the aperture

Shoot camera ray from 𝑥, 𝑦 through 𝒇
Rendering – Path Tracing Basics 109

𝑓

Close to focal length (sharp)

Far from focal length (blurred)

𝒇𝟏

𝒇𝟐

a
p
e
rt

u
re

Motion Blur

Mostly an artistic effect to simulate a familiar camera phenomenon

Occurs when medium exposure
is longer than rate of motion of
objects in the captured scene

Can help convey the impression of
moving objects in still image

In path tracing, all we need is an additional integrated time variable
Rendering – Path Tracing Basics 110

Motion Blur in Path Tracing

Option 1: make camera position a function of time 𝑡

Draw a random 𝑡, create adapted view ray 𝑟

Follow path through the scene

Check which triangles ray intersects

Option 2: make geometry a function of time 𝑡

Draw and store a random 𝑡, create view ray 𝑟

Follow path through the scene

Check which triangles ray intersects at 𝑡

Rendering – Path Tracing Basics 111

𝑝𝑜𝑠(0)

𝑝𝑜𝑠(𝑡)𝑝𝑜𝑠(0)

𝑝𝑜𝑠(𝑡)

Ray 𝑟 at time 𝑡

𝑝𝑜𝑠(0)

𝑝𝑜𝑠(𝑡)
Ray 𝑟 at time 𝑡

Today’s Roadmap

Rendering – Path Tracing Basics 112

What is indirect illumination?

How do multiple bounces work?

Can we add other effects too?

Direct Lighting

Path Tracing v1.0 Path Tracing v0.5

Rendering

Equation

Recap

BSDF Interface Sample

Distribution

Russian Roulette

Everything that is wrong with our path tracer right now

So far, we only rendered very simple scenes (Cornell box)

What happens if we run a slightly more challenging scene?

Ajax bust, 500k triangles

Takes 17 hours (!) to get
a boring, noisy image…

Is path tracing doomed (again)?

No! We will make better images in seconds!
Rendering – Path Tracing Basics 113

Room for Improvement

Economize on samples – squeeze out whatever we can

Better sampling strategies (importance sampling)

Exploiting light source sampling (next-event estimation)

Combining sampling strategies (multiple importance sampling)

Improving our scene intersection tests

Build spatial acceleration structures

Optimized traversal strategies

Support spectacular specular, glossy and transparent materials
Rendering – Path Tracing Basics 114

References and Further Reading

[1] Creating an Orientation Matrix or Local Coordinate System
https://www.scratchapixel.com/lessons/mathematics-physics-for-computer-graphics/geometry/creating-an-
orientation-matrix-or-local-coordinate-system

[2] Depth-of-Field Implementation in a Path Tracer
https://medium.com/@elope139/depth-of-field-in-path-tracing-e61180417027

[3] Toshiya Hachisuka, Wojciech Jarosz, Richard Peter Weistroffer, Kevin Dale, Greg Humphreys, Matthias
Zwicker, and Henrik Wann Jensen. 2008. Multidimensional adaptive sampling and reconstruction for ray
tracing. ACM Trans. Graph. 27, 3 (August 2008)

[4] Ryan Overbeck, Craig Donner, and Ravi Ramamoorthi. Adaptive Wavelet Rendering. ACM Transactions on
Graphics (SIGGRAPH ASIA 09), 28(5), December 2009.

Rendering – Path Tracing Basics 115

https://www.scratchapixel.com/lessons/mathematics-physics-for-computer-graphics/geometry/creating-an-orientation-matrix-or-local-coordinate-system
https://medium.com/@elope139/depth-of-field-in-path-tracing-e61180417027

