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Hi and welcome to this rendering lecture.
My name is Adam Celarek and I will be talking about Monte 

Carlo integration..
Let’s begin with the roadmap
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Roadmap

 Rectangle Rule for Numerical Integration

 Look at problems and why it’s not suitable for us

 Monte Carlo Estimator

 Variance and Importance Sampling

 What about the Hemisphere?

 Apply

We’ll first look at the rectangle rule for numerical integration. 
You probably already know this quadrature rule from one of 
the math courses.

There are some problems with that rule when we increase the 
number of dimensions, however, which make it unusable for 
rendering.

That’s why we’ll introduce the Monte Carlo method for 
Integration.

We then look at some fundamental propperties and learn how 
to use it in practise.
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Rectangle Rule for Numerical Integration

Ok, let’s start with the rectangle rule
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Rectangle Rule for Numerical Integration

source: User 4C / Wikipedia
CC BY-SA 3.0

Here we see a function f(x), that we want to integrate 
numerically between a and b. In other words, we want to 
compute the area I under the curve.
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Rectangle Rule for Numerical Integration

source: User 4C / Wikipedia
CC BY-SA 3.0

A very rough approximation would be to compute the area of a 
rectangle with height f(a) and width b-a
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Rectangle Rule for Numerical Integration

source: User 4C / Wikipedia
CC BY-SA 3.0

Which becomes more precise if we subdivide the rectangle into 
N parts as shown.
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Rectangle Rule for Numerical Integration

source: User 4C / Wikipedia
CC BY-SA 3.0

And quite obviously, the accuracy increases while N grows.

Delta x equals (b-a) / N and x_i are equidistant samples of f in 
the domain from a to b. Since (b-a)/N is independent of i, we 
can pull it out of the sum.
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Rectangle Rule for Numerical Integration

source: User 4C / Wikipedia
CC BY-SA 3.0

Going to infinity would give us the true value of the integral.

That was a one dimensional function (f depends only on x, not 
on x and y), ..
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Rectangle Rule for Numerical Integration

But it can be easily extended to 2 dimensions. F now depends 
on two variables, x and y and we have a volume instead of 
an area.
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Rectangle Rule for Numerical Integration

Before we had rectangles, now we have boxes with equal base 
rectangles (delta x times delta y) and heights f(x, y).

And we have to sum over a 2d array of boxes..
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Rectangle Rule for Numerical Integration

Again, going with the number of boxes towards infinity would 
give us the correct result.
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Rectangle Rule for Numerical Integration

Also works for 3 and more dimensions..

That would also work for 3 and more dimensions.
The concept stays the same but is harder to imagine..
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Rectangle Rule for Numerical Integration

Also works for 3 and more dimensions..
However!

However!
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Problems of the Rectangle Rule

There are some unavoidable problems in higher dimensions 
(like with this eucalyptus forest, that saw too many koalas).

And in rendering, you have many many dimensions..
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Look at problems and why it’s not suitable for us

Sampling regular positions in 1d

Slide modified from Jaakko Lehtinen, with permission

So these are sampling positions for a 1 dimensional function.
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Look at problems and why it’s not suitable for us

Sampling regular positions in 2d

Slide modified from Jaakko Lehtinen, with permission

If you keep N the same and go to 2 dimension, you see that we 
have an O(N^2) algorithm..
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Look at problems and why it’s not suitable for us

Sampling regular positions in 3d

Slide modified from Jaakko Lehtinen, with permission

Going to 3d, looks already quite bad. 
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Look at problems and why it’s not suitable for us

Sampling regular positions in many more dimensions

If have even more dimensions, let’s say 20 (and that would be 
common in rendering), erm
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Look at problems and why it’s not suitable for us

Sampling regular positions in many more dimensions

The result is just not nice!
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Look at problems and why it’s not suitable for us

Sampling regular positions in many more dimensions

Okey, hm, but who said our Δx 
needs to be that small?

Maybe we can accept less 

precision and have a larger Δx?

Ok cat, couldn’t we just trade computation for precision? 
Increasing delta x, decreasing N, maybe the accuracy will be 
enough?
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Look at problems and why it’s not suitable for us

Let’s check out this example. It’s a bit artificial since it’s just 1d, 
but actually it’s the exact thing that would happen in higher 
dimensions..
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Look at problems and why it’s not suitable for us

There you have our sampling positions



  

 

Adam Celarek 23

Look at problems and why it’s not suitable for us

The corresponding function values
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Look at problems and why it’s not suitable for us

And boxes.

Dear cat, we have a problem..
Do you see it?
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Look at problems and why it’s not suitable for us

The computed value will be much smaller than the actual Integral.

Aliasing!

Usually some boxes would underestimate, some overestimate. 
Here we are quite unlucky and all boxes are underestimating. 
So the result would be also underestimated.

That’s just by chance, if the phase of the function would be 
slightly different (it would be a bit further to the left or the 
right), it might be completely ok, or it might overestimate..

This is one form of aliasing, and it’s hurting cat’s eyes..
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Look at problems and why it’s not suitable for us

 Sampling frequency too low (google Nyquist frequency)

 We could apply a low-pass filter before sampling

 Or we could find a better method – a better estimator..

Aliasing!

To be precise, aliasing happens when the sampling frequency 
is too low. That is based on concepts in signal processing. 
Basically a sampler, in signal processing, converts a 
continuous signal into a discrete one. There is the sampling 
frequency, and the Nyquist frequency, which is half of the 
sampling frequency. If the signal contains components with a 
frequency higher than the Nyquist frequency, then there will 
be artifacts in the discrete signal. This is called aliasing. Now, 
the function that we want to integrate is the continuous 
signal, and we process the sampled discreet signal 
immediately by summing up. Nevertheless, aliasing happens 
and we would see it in the rendered picture.

A common method to combat aliasing is to apply a low pass 
filter before sampling, cutting away the higher frequencies.

But that would be non trivial actually, and we have a better 
method, we will describe a better estimator. better for high 
dimensional integrals at least.
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Monte Carlo Integration

Monte Carlo Integration.
Or, another term would be Monte Carlo estimator (for 

integration).
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What’s an Estimator?

“An estimator is a rule for calculating an estimate of a given quantity 
based on observed data..

For example, the sample mean is a commonly used estimator of the 
population mean.” Wikipedia

But what’s an estimator precisely? I mean clearly it estimates 
something..

According to wikipedia:
...

The rectangle rule we saw before is also an estimator..



  

 

Adam Celarek 29

What’s an Estimator?

“An estimator is a rule for calculating an estimate of a given quantity 
based on observed data..

For example, the sample mean is a commonly used estimator of the 
population mean.” Wikipedia

And, we might add, that most estimators produce a stochastic variable.

We might add, that most estimators are stochastic variables as 
well (the rectangle rule one is not stochastic).

Erm,
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What’s an Estimator?

“An estimator is a rule for calculating an estimate of a given quantity 
based on observed data..

For example, the sample mean is a commonly used estimator of the 
population mean.” Wikipedia

“a variable whose values depend on outcomes of a random 
phenomenon”. Wikipedia

And, we might add, that most estimators produce a stochastic variable,

What were stochastic variables again?

Wikipedia: ..

You probably guess correctly that we are going random now :)
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What’s an Estimator?

 In our case:
 The random phenomenon is the process of taking samples

Strictly speaking, equidistant sampling is not random. Therefore, the rectangle rule estimator is not a stochastic 
variable.

 The rectangle rule estimator is actually a mean

In our case, we will make the sampling positions random.

And, algorithms that use random numbers are often called 
Monte Carlo algorithms, not only those for integration. The 
name stems from the casino in Monte Carlo i guess.

Wikipedia gave the example of the sample mean as an 
estimate for the population mean. When we look at the 
rectangle rule estimator we see exactly that, it’s actually a 
mean!
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What’s an Estimator?

 In our case:
 The random phenomenon is the process of taking samples (don’t be nit-picky)

 The rectangle rule estimator is actually a mean

 I mean, look at it

Look at it!
We can push the (b-a) back in to make it even more clear..
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What’s an Estimator?

Estimating the integral using a mean of equidistant samples!

Here we have it again, the problematic example from before..

And we said that equidistant can be a problem, so maybe
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What’s an Estimator?

Estimating the integral using a mean of random uniform samples!

We can keep the number of samples the same, use the same 
delta x, but randomise the positions. It looks about right, no?
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What’s an Estimator?

Does that actually work?
Won’t the result just be some random number?

Estimating the integral using a mean of random uniform samples!

But the cat is critical. Will it actually work? The change in the 
algorithm is just few lines of code, but mathematically it’s 
something totally different. No guarantees, we might just get 
a random number!

In short
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What’s an Estimator?

Does that actually work?
Won’t the result just be some random number?

Yes!
We will prove it

Estimating the integral using a mean of random uniform samples!

Yes. It works.

But still, we have to prove it. 

And unfortunetely, 
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Statistical Recap

 If you remember „107.254 Statistik und Wahrscheinlichkeitstheorie“ 
well enough, you can skip most of it.

 In daily life, we are mostly confronted with discrete random results
 A coin flip

 Toss of a die

 All those combinatorial things (nightmarish for some cats)

 Each possible outcome of a random variable is associated with a specific 
probability. Probabilities must sum up to 1.

We’ll need a bit of statistics for that.

If you remember statistics pretty well, at tu wien that would be 
the bachelor course Statistic und Wahrscheinlichkeitstheorie, 
you can skip most of it.

Otherwise, fear not, the cat is with you ;)

In daily life we mostly see discrete randomness, for instance a 
coin flip, a toss of a die, the casino etc. You probably 
remember that there is a set of possible outcommes, each 
with a certain probability and probabilities sum up to 1.
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Statistical Recap

 If you remember „107.254 Statistik und Wahrscheinlichkeitstheorie“ 
well enough, you can skip most of it.

 In daily life, we are mostly confronted with discrete random results

 In this lesson we deal only with the continuous case
 Probability of a cat weighing a certain amount

 Uniform distribution between a and b
(all real values between a and b are equally
likely)

weight

probability

value

probability

a b

Probability density 
functions (PDFs)

Well, in monte carlo integration we deal mostly with continuous 
statistics. In this lesson, we’ll only use continuous. A real life 
example would be the weight distribution of a cat, described 
by the probability density function (PDF). The cats’ weights   
probably follow a normal distribution with certain parameters. 
Another example would be a uniform distribution between a 
and b.
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Statistical Recap

 If you remember „107.254 Statistik und Wahrscheinlichkeitstheorie“ 
well enough, you can skip most of it.

 In daily life, we are mostly confronted with discrete random results

 In this lesson we deal only with the continuous case
 Probability of a cat weighing a certain amount

 Uniform distribution between a and b
(all real values between a and b are equally
likely)

 Probability must integrate to 1

And similar to the discrete case, the pdf, p integrates to 1.
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Statistical Recap

Notation:

We’ll also have to introduce some notation:
Capital X denote stochastic variables
Small xes are either observations (often with an index variable) 

or normal variables (inside integrals).
Then we have functions f(x). These functions can either eat 

stochastic variables (producing new stochastic variables) or 
just normal variables (observations or inside integrals).

PDFs are also just functions, but with some special conditions 
(integrate to 1 and they are positive).

Finally we have estimators, which we denote with a hat.
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Statistical Recap

Expectation of a stochastic variable

 Our variable is called X, but remember that a function of one or 
more stochastic variables is also a stochastic variable

 X is distributed according to p, a function of x

Wikipedia

And then we have the expectation of a stochastic variable. This 
is also called expected value, or simply the mean, or the 
average.

The expectation itself is not a stochastic variable, it’s a value.
Given a stochastic variable X, which is distributed according to 

the PDF p, the expectation, denoted by capital E is the 
integral of x times p(x). I took that definition from wikipedia :)
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Statistical Recap

Important properties of the expectation

 Linearity

 Law of the unconscious statistician

 Law of large numbers (almost surely)

Wikipedia

Wikipedia

Wikipedia

independent and identically distributed (i.i.d.)

The expecation has some properties and laws that we will use 
in our proof.

It is linear, which means that the expectation of a linear 
combination of stochastic variables, is a linear combination of 
expectations of X. For example expecation of a times X plus 
b times X is a times expecation + b times expecation. A and b 
are constants here.

Then we have the law of the unconscious statistician. The 
expectation of a function of x is the integral of f(x) times p(x).

Finally we need the law of large numbers. It states that the 
average of observations converges almost surely towards 
the expectation, when increasing the number of samples and 
all X are independent and identicallty distributed (in short iid). 
Iid simply means that we don’t do anything funny. This law is 
independent of the PDF of X. The pdf is implicitly used when 
taking observations of X.
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Monte Carlo Integration

Probability of a random uniform value between a and b
value

probability

a b

Alrighty, mighty cat. Let’s look back at our problem from before.
There is our estimator, 1 over N times the sum of (b-a) times 

f(x).
We saw the uniform distribution already once. Its pdf is 1 over 

b-a. 
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Monte Carlo Integration

We don’t know 
whether that will 
approximate the 
integral yet!

We can plug those two friends together. 1 over p replaces the 
factor (b-a). We removed I here, because we want to prove 
that it is a good estimator, we don’t know it yet. And our x_is 
are observations, or samples, of a uniform distribution now. 
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Monte Carlo Integration
Law of large numbers

      
independent 
and 
identically 
distributed 
(i.i.d.)

Next, we use the law of large numbers. The limes of the 
average is the expectation. We said that the samples of x are 
taken from a uniform distribution, so we note that down.

However, this is not the distribution that was used to apply the 
law of large numbers. f(x) divided by p(x) is not distributed 
uniformly. But it is enough that the samples f over p are 
independent and identically distributed.
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Monte Carlo Integration

Law of the unconscious statistician

Now we have that expectation, and we can plug it into the law 
of the unconscious statistician.

The f from the law is f over p, and the distribution is uniform.
The expectation is the integral of the function times the pdf.
So, our result is an integral of f over p times p.
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Monte Carlo Integration

And well, the probabiilties cancel out, and we see that this is 
the integral I, that we wanted to compute.
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Monte Carlo Integration

Great, the cat is happy. This is our proof.
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Monte Carlo Integration

And here we also see, that we can replace the uniform 
distribution by any other distribution. We’ll see shortly how 
that can benefit us.
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Monte Carlo Integration

This is actually quite exciting, the cat is super happy ;)

Arr, wait..
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Monte Carlo Integration

Wait, what if p(x) becomes 0?
Division by 0 is undefined, ey?

What if p(x) becomes 0?
Division by 0 is undefined, ey?



  

 

Adam Celarek 52

Monte Carlo Integration

Wait, what if p(x) becomes 0?
Division by 0 is undefined, ey?

Good catch!
The result of Monte Carlo integration 
becomes wrong if p(x) is 0 but f(x) is not.

That’s a good catch. And the result of Monte Carlo integration 
becomes actually wrong when p is 0 but f not!
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Monte Carlo Integration

Wait, what if p(x) becomes 0?
Division by 0 is undefined, ey?

Good catch!
The result of Monte Carlo integration 
becomes wrong if p(x) is 0 but f(x) is not.
However, our computer program will not 
produce NaNs, as no xi will have p(xi) = 0!

However, out computer program will not produce NaNs, as no 
x_i will occur, because such xes have probability of 0 and will 
not be sampled..

Still we have to fix that..
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Monte Carlo Integration

Wait, what if p(x) becomes 0?
Division by 0 is undefined, ey?

Good catch!
The result of Monte Carlo integration 
becomes wrong if p(x) is 0 but f(x) is not.
However, our computer program will not 
produce NaNs, as no xi will have p(xi) = 0!

And we can do that by requiring that the probability is greater 
than zero inside the integration domain.

In practise, it is enough that p(x) is greater than 0 whenever 
f(x) is not zero.



  

 

Adam Celarek 55

Monte Carlo Integration

And here we have it again. The Monte Carlo estimator with all 
its glory ;)

Appreciate its beauty!

Alrighty mighty cat, but that’s still a bit abstract.
Yes, let’s look at an practical example!
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Monte Carlo Integration

Example

Here we go.
We are looking at a 2d function, the equation is on the top left, 

you see a plot of that function on the right.
The integration area is a rectangle between (-0.1/-0.1) and 

(1.2/1.2), just so its dimensions are not 1 by 1.
And we want to integrate it..
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Monte Carlo Integration

Example

Here you see an implementation using python.

We create N uniformly distributed samples between a and b 
with probability p.

Our samples are then computed with f over p. And the average 
is the estimate.

That’s all.
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Monte Carlo Integration

Example

We can now look at how the estimate behave when increasing 
N.

With small N, the estimate is imprecise. But when we increase 
it, the estimate becomes gradually better and better.
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Monte Carlo Integration

Example

And it pretty much stops to wiggle around when we further 
increase N.

Btw, here you also see, that different runs will produce different 
error curves.

Let’s try to get more insight into the error
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Monte Carlo Integration

Two types of error for estimators

 Bias

 Variance

Generally, there are two types of errors for estimators (not only 
Monte Carlo estimators).

We have bias and variance.
The rectangle rule estimator has bias while the monte carlo 

estimator has variance. The wiggeling in the previous graphs 
is the variance of the monte carlo estimator (it sometimes 
produces a larger and sometimes a smaller value).
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Monte Carlo Integration

Two types of error for estimators

 Biased estimators

 Unbiased estimators

 It is quite common to trade reduced variance for increased bias

The expectation of biased estimators is not the value we want 
to estimate, here the integral. No matter how large N is. This 
does not mean, that such biased estimators are worse than 
unbiased ones. The bias can be much smaller than the 
variance.

Unbiased estimators on the other hand have a correct 
expectation. And due to the linearity of expectation, we can 
actually compute the average of two estimates and again get 
an unbiased estimate (that will be more precise than the 
separate estimates).

In practice it’s quite common to trade variance for increased 
bias. But we won’t go there now..

Let’s look at an example instead
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Monte Carlo Integration

Two types of error for estimators

 Bias

 Variance

We have the rectangle rule estimator on top. And you see, that 
no matter how often we run it, the result is always the same. 
Clearly the variance is 0, and the bias is -2.301..

The monte carlo estimator on the other hand produces a 
different result every time. Variance is not 0, we could 
estimate it by running the estimator many times and using 
the quations for variance. The bias is 0 as we have proved 
before.

We said that we can improve the estimate by averaging 
several runs. Lets do that..
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Monte Carlo Integration

Two types of error for estimators

 Bias

 Variance

Σ 123.54/4 = 30.885
Error: -1.19

Here we go, sum and divide by 4. the result 30.885 is more 
precise than the individual estimates with an error of 
approximately -1.19
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Variance and Importance Sampling

Let’s look at variance in more detail. There are some important 
concepts. And then, we’ll look at importance sampling, a way 
to reduce variance.



  

 

Adam Celarek 65

Variance and Importance Sampling

What is the variance of that estimator?

Ok, we see the Monte Carlo estimator on top. We saw that we 
can run it several times, and we could estimate the variance 
empirically..

But we’re at an university and we should try to do things more 
principled (and even if you’re not at a university that’s still a 
good idea). We’ll get to that in a second, but we need 
another short statistics recap before..
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Variance and Importance Sampling

Statistical Recap

 Variance

 Variance of a linear combination of uncorrelated X

Wikipedia

Wikipedia

Variance is the expectation of the quadratic deviation between 
the stochastic variable and its expectation. Wikipedia also 
shows us a way to reformulate it, but that’s not so important 
for now.

Unlike expectation, the variance is not linear, but we can still 
say something about the variance of a linear combination of 
stochastic variables. Look at the formula, we can square the 
constant a and then pull it out. The variance of a sum of 
stochastic variables is the sum of the variances.

That’s all we need, time to plug things together again..



  

 

Adam Celarek 67

Variance and Importance Sampling

 Estimator

 Its variance

 Linear combination 

That linear combination is quite handy when we look at the 
estimator.

Variance of the estimator, we expand the estimator, square the 
constant and pull it out, pull out the sum..



  

 

Adam Celarek 68

Variance and Importance Sampling

 Estimator

 Its variance

 Linear combination 

The variance of f over p is a constant, and the sum of N 
constants is N times the constant.
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Variance and Importance Sampling

 Estimator

 Its variance

 Linear combination 

Variance of the estimator is inversely proportional to N

And the N cancel out. What remains is that the variance of the 
estimator I is one over N times the variance of a single 
sample.

This is exactly what we saw in the plots of monte carlo error 
before..
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Monte Carlo Integration

Example

Here I ran the experiment again.

In addition to the estimate I plotted the standard deviation 
(which is linear scale and therefore easier to understand than 
variance).

What’s cool here is, that we can use all samples to estimate 
the variance, and then we can just scale with N.
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Monte Carlo Integration

Example

Rerunning the example gives us a different plot of the estimate, 
but in both cases it more or less stays within the standard 
deviation.
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Variance and Importance Sampling

Here we have the result again.

What this tells us, is that we can
1. increase the number of samples and becom more and more 

precise
2. we can estimate the error that we are making.

Think the following: we could continue sampling until variance 
is below a certain threshold.

In practice there are some pitfalls, but that approach is used. 
Maybe something you would want to implement as a bonus 
task?
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Variance and Importance Sampling

Importance Sampling

In the meanwhile, we have that variance. And we want to 
reduce it, obviously. But first, we have to understand it a bit 
better..
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Variance and Importance Sampling

Importance Sampling

Let’s look at this example of a function f(x), that we want to 
integrate using Monte Carlo.

We said that we can choose the PDF for our samples x freely.
Different choices make life more difficult, well, well..

Let’s look at ..
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Variance and Importance Sampling

Importance Sampling

Such a p.

Variance of f over p, right. Here, we have a large f, but only a 
small p. F over p will be large. Here, on the other hand, f is 
small and p large. F over p will be small. That means that the 
variance of f over p is large..

We can do better. Even the uniform distribution would be 
better.. let’s take a look
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Variance and Importance Sampling

Importance Sampling

Here, we now have a larger p, the f over p will be smaller. Here 
p is still larger, but the difference is smaller. Overall, the 
variance will be smaller, but you we could find a better p..
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Variance and Importance Sampling

Importance Sampling

Look at this.

P is still smaller, but it must be if f integrates to something 
larger than p.

This p looks quite good really.

And that is, because we defined p ..
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Variance and Importance Sampling

Importance Sampling

As a f scaled with a constant s. P needs to integrate to one, so 
we can compute s 
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Variance and Importance Sampling

Importance Sampling

As one over the integral of f.

Let’s look at the variance of an estimator with such a p..



  

 

Adam Celarek 80

Variance and Importance Sampling

Importance Sampling

We simply plug p into the variance equation and, after 
chanceling out f over f, arrive at the variance of 1 over s. S is 
a constant, so we have a variance of 0.
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Variance and Importance Sampling

Importance Sampling

Variance is 0, that’s the perfect estimator.. we would need only one 
sample to estimate I perfectly!

That sounds wrong, doesn’t it?
Well, the thing is, that in practise it’s not possible to get such a 

probability density function for non trivial problems. Start with the 
fact, that computing s would involve the integral of f, which is the 
problem that we started with.

There is an ingenious algorithm that goes into that direction, it’s called 
metropolis light transport and is based on correlated chains of 
samples. However, that algorithm has some other problems and it is 
too complicated for now..

For now we will try to use PDFs that are as close to f as possible. This 
method is called importance sampling, because we try to sample 
important parts of f. We’ll see more about that in one of the 
upcoming lectures.

Before that, let’s try to understand how to apply Monte Carlo in 
rendering. In the last lecture we had those hemispheres.. 
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What about the Hemisphere?

Cartesian 1d / 2d okey, but what about that hemisphere stuff?

And it’s not immediately clear how the 1d / 2d stuff that we saw 
now maps to the hemisphere. Functions in the hemisphere, 
that might be hard to imagine, it’s a bit weird, no?
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Cartesian 1d / 2d okey, but what about that hemisphere stuff?

What about the Hemisphere?

surface hemisphere

Both are 2d manifolds in 3d space!

Well, a 2d cartesian coordinate plane can be seen as a surface 
in 3d. We call such a surface a 2d manifold in 3d space. 
Locally you can move in 2 independent directions.

You can do the same on a hemisphere, locally you can move in 
to independent directions. It’s just another manifold in space.
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Cartesian 1d / 2d okey, but what about that hemisphere stuff?

What about the Hemisphere?

surface hemisphere

Both are 2d manifolds in 3d space!
x is a point on that manifold.

f(x) assigns a value to that point.
p(x) is also just a function.

x
x

Let’s say we have a point x on that surface. We can have a 
function f, that assigns a certain value to the point. The pdf is 
also just a function, so that also works..
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Cartesian 1d / 2d okey, but what about that hemisphere stuff?

What about the Hemisphere?

surface hemisphere

There can be several equivalent ways to describe x

x
x

u/v coordinates
Global x/y/z
..

θ/φ angles
x/y/z local direction with x2 + y2 + z2 = 1
Origin and destination global positions
..

And we can have different systems to describe the point, or its 
coordinates.

For a flat surface, we could have UV coordinates, or global 
XYZ coordinates or other options..

For the hemisphere, we could have two angles, theta and phi, 
or we could have a local vector x/y/z with a length of one (so 
that we stay on the manifold, or we could have the origin of 
the hemisphere and another point in space and define the 
point by intersection (vector of length 1, pretty similar to the 
second description method actually).

This is just to paint a picture. In practise we will use theta and 
phi..

Now for choices of the pdf..
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Cartesian 1d / 2d okey, but what about that hemisphere stuff?

What about the Hemisphere?

surface hemisphere

Options for p(x)

uniform linear

gaussian textured

uniform

cosineBRDF

Surface mapped 
to hemisphere

For the surface, uniform distribution is often a good choice. But 
we could also have linear, or a gaussian, or even a pdf based 
on a texture. The choice of importance sampling strategy 
depends on the function that we want to integrate.

For the hemisphere, we could have a uniform distribution, we 
could map a surface to the hemisphere and use that, we 
could use importance sampling of the BRDF (the material, 
we’ll see an example on the next slide), or the cosine (which 
can be used for diffuse materials to account for the cosine 
rule).
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Variance and Importance Sampling

Importance Sampling

BRDF

uniform

Slide modified from Jaakko Lehtinen, with permission

Here we see different sampling strategies for a BRDF, on top 
uniform sampling and on the bottom importance sampling. 
The BRDF function along with few samples is visualised in 
the middle and the result of rendering on the right.

We we look at the results
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Variance and Importance Sampling

Importance Sampling

Slide modified from Jaakko Lehtinen, with permission

We clearly see, that importance sampling gives us less noise 
in the result. That’s what we saw before. The PDF is closer to 
the function that we want to integrate, and therefore we have 
less noise.
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Cartesian 1d / 2d okey, but what about that hemisphere stuff?

What about the Hemisphere?

surface hemisphere

Options for p(x)

uniform linear

gaussian textured

uniform

cosineBRDF

Surface mapped 
to hemisphere

Right now we will not look further into these importance 
sampling techniques. We have a separate lecture for that, 
stay tuned :)
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Cartesian 1d / 2d okey, but what about that hemisphere stuff?

What about the Hemisphere?

surface hemisphere

Options for p(x)

uniform Surface mapped 
to hemisphere

uniform

Easy for rectangles, 
it’s just a 2d 

integral

Used in first 
assignment Implicit, when 

performing change 
of variables.

See first lecture!

Uniform sampling of a rectangle is pretty easy, we did it in an 
example before already.

We will try to understand sampling of the hemisphere next.

And surface mapping kinda happens implicitly, when 
performing a change of variables.
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Understand the hemisphere..

What about the Hemisphere?

Ok, finally, let’s try to understand that hemisphere..
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What about the Hemisphere?

Remember the equation for reflected light?

Light going in 
direction v

Light from 
direction ω Solid angle 

Material, modelled 
by the BRDF

We have seen that equation before.
The result is the light going to the camera, we are integrating 

over the hemisphere, and the function consists of the 
material BRDF times the incoming light times the cosine.

Now we will try to get some intuition on how to perform Monte 
Carlo integration on it..
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What about the Hemisphere?

Remember the equation for reflected light?

This is just a function that eats the position, scene, 
integration variable (ω) and returns a value!

As said, this function just eats certain values, in whatever 
representation, and returns another value.
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What about the Hemisphere?

Remember the equation for reflected light?

Let’s assume white diffuse 
for now, so this becomes 
constant 1/π.

We assume a white diffuse material for now, so the brdf 
becomes 1 over pi.
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What about the Hemisphere?

Remember the equation for reflected light?

Incoming light is computing by tracing rays. These lights are 
further away, somewhere in the scene, but for the integral 
that part doesn’t matter.
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What about the Hemisphere?

Remember the equation for reflected light?

So we can assume that they sit right on the surface..



  

 

Adam Celarek 97

What about the Hemisphere?

Remember the equation for reflected light?

And multiplying it with the cosine basically weights the lights 
depending on theta..



  

 

Adam Celarek 98

What about the Hemisphere?

Remember the equation for reflected light?

?

Finally, the hemisphere..

Well, we can use an analogy of 
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What about the Hemisphere?

source: User Strebe / Wikipedia
CC BY-SA 3.0

source: User Strebe / Wikipedia
CC BY-SA 3.0

Earth and a 2d map of the continents..

Since we only need a hemisphere and not a sphere, we cut it 
in half..
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What about the Hemisphere?

source: User Strebe / Wikipedia
CC BY-SA 3.0

source: User Strebe / Wikipedia
CC BY-SA 3.0

Sorry Australia, there are no kangaroos in Austria ;)
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What about the Hemisphere?

source: User Strebe / Wikipedia
CC BY-SA 3.0

source: User Strebe / Wikipedia
CC BY-SA 3.0

θ

θ

φ φ

π/2

0

0 2π

We can describe any point on the upper hemisphere by phi 
and theta.

But beware, Greenland and Svalbard are way too big on the 
flat map. They are overrepresented.
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What about the Hemisphere?

source: User Strebe / Wikipedia
CC BY-SA 3.0

source: User Strebe / Wikipedia
CC BY-SA 3.0

θ

θ

φ φ

Give less weight to the pole => sin(θ)

π/2

0

0 2π

We can multiply with sin of theta to account for that
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What about the Hemisphere?

And so we arrive at this mapping:

Instead of integrating over the hemisphere, have 2 integrals 
now, that use a rectangular domain..
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What about the Hemisphere?

We could directly 
use uniform 
sampling here!

And we could use uniform sampling of theta and phi for 
integration (just like before in the example).



  

 

Adam Celarek 105

What about the Hemisphere?

Red Green Blue

We compute the integral separately for 3 colour channels..
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What about the Hemisphere?

Red Green Blue

And this is just to visualise, that these are really just 2d 
functions.

In practise, we will not split the integral into theta and phi, but 
sample the hemisphere directly. That saves us computing 
sine, and some of the importance sampling methods would 
be difficult in this domain..
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Apply

Now that you understand Monte Carlo Integration and the 
hemisphere, we can finally apply it to compute some nice 
renderings..
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Apply

Ambient Occlusion

We’ll start with ambient occlusion, same as in the assignments.

You might know this technique from one of the real time 
courses. There you probably computed it in screen space, 
which is a quicker approximation to the real deal that you’ll 
see here. I’ll repeat the principle, so that everybody is on the 
same page..
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Apply

Ambient Occlusion

Ambient occlusion assumes that light can reach exposed 
surfaces more easily, and therefore cavities are darker.

Think of computing the amount of open sky above a point. It’ll 
be less in corners like here and more in points like here and 
here..
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Apply

Ambient Occlusion

We can compute it by integrating the hemisphere and checking 
outgoing rays..

Very often, the length of that ray will be caped.
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Apply

Ambient Occlusion

Here is the integral for reflected light. This is not the integral for 
ambient occlusion yet, but we’ll arrive there shortly..
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Apply

Ambient Occlusion

White diffuse

We assume white diffuse material again
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Apply

Ambient Occlusion

White diffuse

Shadow ray:
Cast a ray in 
direction ω and 
check whether it 
hits an object
→ 1 or 0

And replace the incoming light by a shadow ray that gives 
either 0 or one, depending on whether the ray hit something 
or not.
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Apply

Ambient Occlusion

White diffuse

Shadow ray:
Cast a ray in 
direction ω and 
check whether it 
hits an object
→ 1 or 0

x

Ω

nx
v ω

(dot product)

White diffuse

We still need the cosine, which is easy to compute using a dot 
product beween omega (the sample direction) and the 
normal.
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Apply

Ambient Occlusion

 Cast a ray from camera into the scene and find the first hit-point

 Locally, evaluate

 Okey, Monte Carlo:
 Generate samples for ω -> uniform sampling

 Evaluate the function -> 1/π V(x, ω) nxω
(needs a ray cast into the scene)

 Divide by the probability p(ω) = 1/2π (surface of a unit hemisphere)

 Calculate the average of the above. 

x

Ω

nx
v ω

That’s the algorithm:
We start at the camera, and cast rays according to the pixel 

position, finding our first hit-point.
On that hit-point we evaluate that integral using Monte Carlo.
To that end, we generate a sample omega using uniform 

sampling (search the internet or check our assignment 
sheet).

We then evaluate the function 1/pi times visibility times dot 
between the normal and omega, which needs a ray cast into 
the scene

Next, we divide by the probability, which is one over the 
surface, since we do uniform sampling, and the surface of 
the hemisphere is 2pi (wikipedia).

And finally we compute the average of these samples..
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Apply

Ambient Occlusion

for (py = 0; py < height; py++)
    for (px = 0; px < width; px++)
        camera_ray = camera.gen_ray(px, py)
        x = scene.trace(camera_ray)
        if (!x.valid)
            rendering[y][x] = 0;
            continue;
        for (i = 0; i < N; i++)
            omega, prob = uniform_hemisphere(x.normal)
            shadow_ray = ray(x, omega)
            y = scene.trace(shadow_ray)
            f = y.valid * dot(x.normal, omega) / pi
            rendering[y][x]+= f / prob
        rendering[y][x] /= N

x

Ω

nx
v ω

Here is some pseudo code..

When implementing, you can pause, or read the slides on the 
course homepage. Note that for our students, which use nori, 
that code is spread over several files and classes. In 
particular, the loop over N is done globally, while the 
integrator code will be in separate plugins. The assignment 
sheets should give enough hints on where to find the 
relevant parts.. The good thing is, that these can then be 
reused for other integrators..
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Apply

Direct lighting (soft shadows)

source: Martin Kraus, Wikipedia 
(no changes, CC BY-SA 3.0)

Let’s now look at direct lighting, or in other words how to 
compute soft shadows..
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Apply

Intuitive Picture

Slide modified from Jaakko Lehtinen, with permission

Laine et al. SIGGRAPH 2005

Basically, what that does is computing the percentage of visible 
light for every surface point visible in the camera.

It’s not that different from the ambient occlusion case, just that 
we aim for light source surfaces instead of the whole world..
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Apply

Direct lighting (soft shadows)

We can do it 2 ways

 Sample the hemisphere randomly and hope
to hit a light source

 Sample the light source surface directly
and perform a change of variables

source: Martin Kraus, Wikipedia 
(no changes, CC BY-SA 3.0)

We can do that in 2 ways, either sampling the whole 
hemisphere, or perform a change of variables and sample 
the light source surface.
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Apply

Direct lighting (soft shadows)

We can do it 2 ways

 Sample the hemisphere randomly and hope
to hit a light source

 Sample the light source surface directly
and perform a change of variables

We have seen all the necessary parts in the light lecture, but need 
to assemble them..

source: Martin Kraus, Wikipedia 
(no changes, CC BY-SA 3.0)

In the assignments you can implement both ways. The first 
way is quite similar to ambient occlusion code wise, so we’ll 
skip it. 

For the second way, we have seen all the necessary parts in 
the lecture about light, but we still need to assemble them..
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Apply

Light going in 
direction v

Light from 
direction ω Solid angle 

Material, modelled 
by the BRDF

Integral for outgoing light

Again, the integral for outgoing light. But there is no surface 
sampling..
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Apply

Solid angle
Light from source [l] 
arriving at point x

light intensity at position y 
on the surface

Change of variables for integrating over a light source surface

Here we have the integral for incoming light, with surface 
sampling and the change of variables, but without the BRDF.
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Apply

Direct lighting (soft shadows) (something is missing)

Light going in 
direction v

Material, modelled 
by the BRDF

light intensity at 
position y on 
the surface

emitter cos(θ)

receiver cos(θ)

distance

Easy enough to plug those two friends together, but something 
is missing. Can you spot it?

I’ll give you a few seconds..
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Apply

Direct lighting (soft shadows) (usable for rendering)

Light going in 
direction v

Material, modelled 
by the BRDF

light intensity at 
position y on 
the surface

emitter cos(θ)

receiver cos(θ)

distance

visibility (new, ray tracing)

The visibility term!

We need ray tracing to compute it..
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Apply

Light going in 
direction v

Material, modelled 
by the BRDF

emitter cos(θ)

receiver cos(θ)

distance

light intensity at 
position y on 
the surface

visibility (new, ray tracing)

Direct lighting (soft shadows) (the same, but more explicit)

That’s the same, but cosines and distance squared is 
expanded..



  

 

Adam Celarek 126

Apply

Direct lighting (soft shadows)

for (py = 0; py < height; py++)
    for (px = 0; px < width; px++)
        camera_ray = camera.gen_ray(px, py)
        x = scene.trace(camera_ray)
        if (!x.valid)
            rendering[y][x] = 0;
            continue;
        for (i = 0; i < N; i++)
            y, prob = sample_light_source() // uniform sampling; prob = 1/A
            v = scene.are_visible(x, y)
            omega = (y-x).normalised()
            f_r = scene.brdf(x, omega, v)
            solid_angle = dot(y.normal, -omega) / dot(y-x, y-x)
            f = f_r * y.emittance * v * dot(x.normal, omega) * solid_angle
            rendering[y][x]+= f / prob
        rendering[y][x] /= N

And here we have some pseudo code again..

So..
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Next Lecture: The Rendering Equation

That is it for today. Next lecture we will take a look at the 
rendering equation, which describes the scattering of light 
over several bounces, and after that we’ll look at path tracing 
the most important rendering algorithm..

Take care and see you..


