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Abstract

We propose a new method for the fast computation of light maps
using a many-light global-illumination solution. A complete scene
can be light mapped on the order of seconds to minutes, allowing
fast and consistent previews for editing or even generation at load-
ing time. In our method, virtual point lights are clustered into a
set of virtual polygon lights, which represent a compact description
of the illumination in the scene. The actual light-map generation
is performed directly on the GPU. Our approach degrades grace-
fully, avoiding objectionable artifacts even for very short computa-
tion times.

CR Categories: Computer Graphics [I.3.7]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture

Keywords: global illumination, light-maps, instant radiosity

1 Introduction

Global illumination methods can be categorized into two classes:
high-quality offline solutions, which often take hours to compute;
and interactive solutions, which take some shortcuts to increase per-
formance. However, interactive solutions typically require signifi-
cant hardware resources, restricting their use to high-end GPUs,
and often exhibit noise and flickering artifacts, especially when the
camera is moving.

When restricting the computation to view-independent illumination
effects, it is possible to precompute the lighting in the scene into so-
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called light maps. These are still very popular despite the restriction
to view-independent lighting, because they allow the scene to be
rendered at full frame rates at little hardware resources, and com-
pletely avoid noise and flickering artifacts.

Unfortunately, the computation of light maps is again an offline
process, preventing dynamic changes in lighting or the scene. In
applications such as level design for games, architectural lighting
design, interior design and many others, it is important to be able
to change the lighting situation while still being able to provide a
real-time and artifact-free walkthrough as afforded by light maps.

In this paper, we therefore present a method to accelerate the com-
putation of light maps to the level of seconds instead of hours, so
changes in the lighting situation can still be observed in an interac-
tive application after a short delay, without requiring a full offline
computation cycle. This makes the method applicable for lighting
design applications, game level design, or even in-game compu-
tation, where lighting for a level can be defined and computed at
loading time, therefore avoiding having to store the full lighting so-
lution on the distribution medium.

In order to achieve near-interactive precomputation speeds for light
maps, we build on the concept of virtual point lights, which have
been used in interactive global illumination before. As an improve-
ment we introduce the idea of virtual polygon lights, which allow a
much higher quality solution than previous interactive methods. In
particular, we offer the following contributions:

• A novel VPL clustering method for generating virtual polygon
lights providing a good fit especially for planar geometry.

• An evaluation of the virtual polygon lights that uses analytical
form factors, providing higher accuracy and less artifacts.

• Independent of the concrete illumination algorithm used, we
also show a new rasterization method for light maps that en-
sures that no light-map texels are omitted.

2 Related Work

Only few publications focus on light-map creation, which poses a
different problem than images synthesis. Though the same princi-
pal approaches can be taken in both cases, there are large differ-
ences in the applicability of a method to the two differing problems
due to calculation time and memory requirements.



Initially, light maps were often generated using radiosity [Cohen
et al. 1993], since this solves the global illumination for the com-
plete scene independent from the viewpoint, but in principle, any
general global-illumination method such as path-tracing [Kajiya
1986] or bi-directional path-tracing [Lafortune and Willems 1993]
can be used for light mapping as well. However, the complete light-
ing in large scenes usually requires very long rendering times using
these general approaches.

Photon mapping [Jensen 1996], with optimizations such as clus-
tered photon gathering [Wang et al. 2009], parallel final gathering
through micro-rendering [Ritschel et al. 2009], image-space pho-
ton mapping [McGuire and Luebke 2009], interactive global pho-
ton mapping [Fabianowski and Dingliana 2009] and parallel pro-
gressive photon mapping [Hachisuka and Jensen 2010] can create
single realistic images in the order of seconds. Due to the view-
independence, photon mapping can be used directly to calculate
light maps, though storing and gathering a large amounts of pho-
tons may be prohibitively expensive in large scenes.

Recently, parallel global ray-bundles [Hermes et al. 2010] have
been used to generate light maps in a couple of minutes [Tokuyoshi
et al. 2011]. Voxel-based global illumination techniques (e.g.
[Thiedemann et al. 2011] or [Crassin et al. 2011]) can perform an
approximate light transport even for dynamic objects interactively.
Since voxels are normally not aligned to the geometry, they may
lead to objectionable artifacts such as light leaks or re-rasterization
problems and are therefore very problematic for high-quality light-
map generation.

Many-light global illumination approaches have their origin in in-
stant radiosity introduced by Keller [1997] and efficiently capture
the global light distribution even in large scenes using virtual lights.
For better scalability, Walter et al. [2005] introduced lightcuts that
generate a clustered hierarchy of virtual lights and choose an appro-
priate cut through the light-tree per pixel, based on an error metric
to significantly reduce rendering costs. Furthermore, matrix row-
column sampling [Hašan et al. 2007] allows to approximate visibil-
ity calculations for virtual lights by GPU rasterization.

Most methods use virtual point lights (VPLs) which lead to illu-
mination spikes and energy loss due to clamping, introducing ma-
jor artifacts and loss of physicality in many situations. Recently,
Hasan et al. [2009] introduced spherical virtual lights to avoid the
point light singularities. Novak et al. [2011] approach this prob-
lem by compensating the energy loss in screen-space as a post-
processing effect.

In real-time implementations, VPLs are often generated in a re-
flective shadow mapping (RSM) [Dachsbacher and Stamminger
2005] pass from a rasterized light-view, capable of generating
thousands of VPLs instantaneously. Shadow mapping [Williams
1978] is used for visibility computations. Since shadow map-
ping is the limiting factor, Laine et al. [2007] reduce the num-
ber of shadow map updates with a caching and update strategy.
Ritschel et al. [2008] speed up the visibility computations using im-
perfect shadow maps (ISM), allowing visibility tests from hundreds
of points and thereby enabling interactive computation of multiple
indirect bounces. View-dependent optimizations of ISM even allow
large dynamic scenes [Ritschel et al. 2011]. Dong et al. [2009] per-
form a VPL-clustering to reduce the number of visibility tests. To
account for visibility artifacts, an area approximation of the cluster-
ing is used to generate soft shadows with convolution soft shadow
maps (CSSM) [Annen et al. 2008]. A different clustering and area
light evaluation has been used by Prutkin et al. [2012] for a real-
time single bounce global illumination.

3 Overview

To produce high-quality light maps, we need to calculate the com-
plete lighting of the whole scene in the texture space of the scene
geometry. Figure 1 shows the components and data flow of our ap-
proach. As input of the light map computation, we assume a static
scene with a complete, unambiguous uv-parametrization suitable
for a light map atlas (see Figure 2).
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Figure 1: Overview of the proposed method.

Figure 2: Example of a light map atlas (left) with baked global
illumination and the light mapped scene (right).

In a pre-processing step, the light-map atlas pre-processing, de-
scribed in Section 4, we use the GPU to quickly identify light map
texels that would be missed if only standard triangle rasterization is
used for light map calculation. This step has to be carried out only
once, as long as the light map parameterization does not change,
i.e. when objects are only rigidly transformed. On the CPU(s) we
perform virtual light creation (see Section 5), starting with a large
number of VPLs generated by tracing rays from the primary light
sources. These VPLs are clustered first into planes, and within each
plane into similar sized clusters using a kd-tree in order to create a
much smaller number of higher-order virtual lights. On the GPU
we perform light accumulation (see Section 6) by calculating illu-
mination for each light-map texel with shadow mapping from the
primary lights and all generated virtual lights.

4 Light-Map Atlas Pre-processing

In order to accumulate the illumination of virtual lights, we need
to (1) identify all light-map texels that might later be accessed by
the renderer, and (2) provide a method to enumerate all those texels
together with their world-space positions and normals to calculate
the illumination for each texel. By rasterizing the scene geome-
try directly into the light-map atlas using the texture coordinates as
positions, the mapped light map texels can be identified, and cor-
responding world-space positions and normal vectors can be calcu-
lated by interpolation.



Figure 3: Continuously parametrized geometry rasterized in uv-
space on the GPU (left). Due to rasterization rules only texels
whose center falls within a triangle are generated (green). Light
mapped scene geometry (right) accessing empty texels (red). Bor-
der edges where parametrization is forced to be separated (blue).

Interestingly enough, this holds a surprising challenge for light map
rendering if these steps are performed on the GPU using the stan-
dard rasterization pipeline: due to the rasterization rules, only tex-
els whose centers fall within the analytical texture-space triangle
actually produce a fragment, as illustrated in Figure 3 (left). Since
any texel intersected by the triangle edges can be queried when the
light-mapped scene is rendered, illumination information might be
missing (red texels in Figure 3, right). In the worst case, a pa-
rameterized geometry part may hit few or even no texel centers of
the assigned region, making dilation strategies too inaccurate and
therefore unfeasible. This problem could be countered by

• analyzing the parameterization and adjusting the uv-
coordinates (complex cases, error prone),

• accumulation of multiple varying rasterizations (high over-
head) or

• conservative rasterization [Hasselgren et al. 2005] (expen-
sive),

or completely avoided by pre-computing world-space positions and
normals of all texels into additional buffers (high memory require-
ments).

In order to avoid the disadvantages of these methods, we propose
a fast solution with low memory consumption that avoids repeated
drawing of texels: since point primitives are guaranteed to be raster-
ized, we use an additional list of points to generate the world-space
positions and normals of texels missed by the triangle rasterization.
The detection of missed texels and the consecutive generation of
this point list only needs to be performed once in a pre-compution
step, and also detects triangles that do not by themselves (i.e., with-
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Figure 4: Combining rasterization rules of point (left), lines (mid-
dle) and triangles (right) in three passes allows reconstruction of
almost all intersecting texels. Texels only intersected by lines out-
side the diamond test area are not generated.

out the rendering of edge or point primitives) produce any texels
and can therefore be omitted in future rasterizations.

For generating points for missed texels and detecting dispensable
triangles, we again exploit the GPU rasterization rules of different
primitives. We render the scene geometry in uv-space in the fol-
lowing order (see Figure 4): first, the vertices are rasterized as point
primitive (left), second, the edges of the triangles are rasterized as
line primitives (middle) and third, the geometry as triangles (right).

All problematic texels can be identified after readback to the CPU,
as they have been rasterized by a point or line. The world-space
position and normal for each of them is calculated, and recorded
in a list Puv . Additionally, we record a list of all the triangles Tuv
that contributed to the uv-space rasterization, avoiding unnecessary
micro triangles that do not create any texels.

During light accumulation, we can rasterize Tuv in uv-space and
handle the problematic texels by subsequently rasterizing all points
Puv , thereby reconstructing all visible surface points. Figure 5
shows the result of the light accumulation (left) and the shaded
scene geometry using a filtered light map including the detected
missed texels in comparison to Figure 3.

Figure 5: Texel visualization of accumulated illumination using
triangles Tuv and additional points Puv (left). Scene geometry
shaded by filtered light map (right).

5 Virtual Light Creation

Real-time virtual light-based methods use a very small number of
some hundreds of paths to distribute the light energy. Accurate
global light distribution on the other hand requires the evaluation
of tens or hundreds of thousands light paths to place VPLs. How-
ever, accumulating the contribution of all VPLs individually is not
feasible. Since we are not constrained to real-time calculations, we
can strive to create higher quality virtual lights that better capture
the light distribution in a scene. The main idea in our approach is
to cluster a larger number of VPLs into at set of higher order vir-
tual lights. By introducing virtual polygon lights, we can efficiently
evaluate the distributed light energy, while at the same time avoid-
ing energy loss or spikes by improving energy transport accuracy
with an analytical form factor evaluation.

5.1 VPL Generation

In order to pipeline the computation of VPL clusters on the CPU(s)
and the subsequent computation of light maps on the GPU, we per-
form the simulation of each light source and each bounce sepa-
rately, and thus generate the virtual lights one light bounce at a
time. In addition to achieving nearly 100% utilization of the GPU
for the shadow-map calculations of the virtual lights, the separation
of bounces also leads to improved and automatically adapting clus-
tering results for indirect illumination, incorporating the low spatial
frequency attributes of higher diffuse bounces.



5.2 kd-Tree Clustering

In architectural scenes, a large number of surfaces are planar, al-
lowing an easier approximation of light emission than on arbitrary
surfaces. We exploit this fact in our approach by starting with a
plane search in the VPL set. The search is performed using the
RANSAC-based method introduced by Schnabel et al. [2007]: The
VPLs are decomposed into connected planar subsets, each lying ap-
proximately on a plane, and a set of remaining VPLs, representing
arbitrarily formed surfaces.

For further clustering of the segmented VPLs we use a hierarchical
method with a kd-tree data structure that operates in 2D on detected
planar segments and in 3D for the remaining VPLs: compute the
axis-aligned bounding box of the VPLs, select the dimension with
the greatest extent of this box, and split at the median position of
this dimension. This operation is performed recursively on the sub-
sets of VPLs until they are split into a set of clusters that contain
approximately the same number of VPLs.

While this operation is very fast and creates clusters with approxi-
mately equal amount of light energy, forcing a median split does not
cleanly separate lit areas split by shadow regions. In 3D there is the
additional risk that the split plane coincides with a set of VPLs on
a roughly planar surface, leading to a random separation and poor
clustering. Therefore, we relax the requirement to split at the exact
median pm. If the VPLs are sorted according to their position along
the split dimension, it is possible to linearly search for better split
positions pj along this dimension. We perform a search for large
gaps in the VPL distribution along the split dimension, and choose
the split point which optimizes a weighted criterion between gap
size |pj − pj+1| and index j relative to the median Im = n+1

2
:

max j

{
|pj − pj+1|

(
1− 2|Im − j|

n

)ρ
, j = 1 . . . n− 1

}
(1)

Our choice for the weighting parameter ρ is 0.5 to allow splits
that are noticeably different from the median. This search signif-
icantly improves the clustering of the method while the computa-
tional complexity is still acceptable (O(n · logn · log k), for nVPLs
and k clusters).

For each cluster lying on a planar surface, we compute the 2D
convex hull of all VPLs in that cluster. Due to limitations during
the form factor evaluation on the GPU (max. 8 vertices), a sim-
plified version of that hull polygon calculated using simple poly-
line vertex reduction forms the basis for computing the polygon of
the virtual light. This simplified hull is extend by a border of size
1.5 ·

√
Areahull/n and clipped against the kd-tree cell border in

order to close the gaps between polygon lights in neighboring cells,
assuming homogeneous photon density. The remaining VPL clus-
ters, generated with the 3D kd-tree version, are approximated with
sphere lights [Hašan et al. 2009].

The right image in Figure 6 demonstrates how the plane-aligned
clusters and the emerging virtual polygon lights result in a close
match to the geometry in the scene, leading to a reduction in illu-
mination artifacts on corners prevalent in previous VPL-based ap-
proaches (see Section 7.2 for a detailed comparison).

6 Light Accumulation

First, we calculate direct lighting using the standard approach with
shadow mapping into the light map. Of course, if the direct light is
calculated dynamically, this step can be trivially omitted. For global
illumination, the light map serves as render target and the irradiance
of each virtual light is accumulated with additive blending. The
pre-computed triangle list Tuv and point list Puv (see Section 4)

convex hull

simplified hull

extended hull

kd-tree cell

polygon light

Figure 6: Left: A polygon light is created out of a 2D VPL cluster
by extending a simplified version of the convex hull and clipping it
against the kd-tree boundaries. Right: Initial plane search leads to
virtual polygon lights that closely match the underlying geometry,
avoiding illumination artifacts in corner regions.

provide the surface points (py, ny) of the scene at each light-map
texel to the pixel shader. There, the irradiance Ex(py, ny) caused
by a single virtual polygon light Ax can be calculated as:

Ex(py, ny) = ΦAx · Vx(py) · dFAx→dAy (py, ny)/dAy (2)

The light power ΦAx is the sum of the powers of all VPLs on the
polygon. Together with the analytic form factor FAx→dAy , which
gives a precise scale for the light power at full visibility, the light
energy is distributed accurately. We currently approximate the visi-
bility term Vx(py) of the polygon area using percentage closer soft
shadows (PCSS) [Fernando 2005] with a cube shadow-map ren-
dered from the polygon center.

6.1 Virtual Polygon Light Evaluation

Excluding visibility, the illumination transported by a virtual poly-
gon light source with the area Ax with Lambertian emission char-
acteristics to the differential area dAy of a light map texel can be
computed analytically using the polygon to differential area form
factor, which can be derived analogously to the differential area to
polygon form factor [Baum et al. 1989]:

dFAx→dAy =
1

2π ·Ax

e∑
i=1

~ny ·
~Γi

|~Γi|
γidAy (3)

~Γi = ~Vi × ~Vi+1 (4)

where e is the number of edges of the light source, ny is the nor-
mal vector of the receiving differential area dAy . ~Vi are the vec-
tors from the differential area to the vertices of the polygonal light
source, while γi denotes the angles between these vectors. A graph-
ical representation of the form factor calculation is shown in Fig-
ure 7 (left). Note that although the equation is valid for non-convex
polygonal light sources, our clustering method only creates convex
polygonal lights.

ny
Vi

Vi +1
γi

dAy

Ax

Figure 7: Polygon to differential area form factor (left). Polygon
light located partially below the plane of the receiving texel (right).

Since we have an arbitrary configuration of polygon lights, they
may be located partially below the plane of the receiving texel (see



Figure 7 (right)). In order to correctly compute the form factor, it is
necessary to clip the polygon of the virtual light source against the
plane of the receiving texel, as equation 3 is only valid for complete
visibility.

The clipping operation and the polygon to differential area form
factor computation are performed in the geometry and pixel shader
stages of our light-map accumulation pass. The shader implemen-
tation performs early exit checks for lights with zero influence to
(py, ny) based on the orientation of the polygon. Additionally, a
bias for points within an ε-region of 0.5 times the texel size of the
plane the texel lies in is required to avoid the artifacts illustrated in
Figure 8. For the form-factor calculation, the position py of points
facing the polygon center is shifted along its surface defined by
ny to the intersection of the upper ε-border of the polygon plane.
This prevents darkened edges in corners if a light-map texel posi-
tion py falls within the ε-region. Due to numerical instabilities, it is
necessary to treat polygon lights with extremely small solid angles
separately in the form-factor calculations. In such a case, we switch
to standard point-light evaluation, avoiding noise and speeding up
the computation.

polygon
light

polygon
light

Figure 8: Linear interpolation between lit and unlit light map tex-
els causes shadow leaks (left). Moving texels within an ε-region
into the illuminated area avoids these artifacts (right).

7 Analysis and Results

In this section, we will first discuss the properties of our kd-tree
clustering and general challenges of creating polygonal lights from
VPL clusters. Second, we compare our virtual polygon lights to
other higher order virtual lights used in recent publications. Finally,
we give an overview of the performance of our complete light-map
rendering system.

7.1 VPL Clustering

The kd-tree-based virtual light creation approach presented in Sec-
tion 5.2 provides a fast and robust top-down clustering for several
hundreds of thousands of VPLs. In comparison to k-means clus-
tering as used in [Dong et al. 2009] and [Prutkin et al. 2012], our
method guarantees an even global distribution. Dynamic updates
and temporal coherence as required for real-time GPU implemen-
tations are not necessary for light-map computation. The cluster-
ing introduced in lightcuts [Walter et al. 2005] proceeds in bottom-
up fashion and builds a complete hierarchy of all VPLs following
an error metric, but it cannot be efficiently evaluated in a pixel-
based selection on the GPU. Our kd-tree clustering builds local,
geometry-aligned groups with an approximately equal amount of
light energy. In order to create a suitable representation with polyg-
onal virtual lights, the following difficulties had to be solved:

• alignment to geometry edges

• VPL density variations

• concave regions

The accurate energy transport provided by the polygon contour in-
tegral requires that polygonal lights are well aligned to the scene
geometry in order to avoid bleeding artifacts. As already discussed
in Section 5.2, initial plane clustering and simplifying the cluster-
ing to two dimensions results in much better alignment to the scene
geometry. This was possible by using the fast shape detection of
Schnabel et al. [Schnabel et al. 2007]. However, it has to be inves-
tigated if incorporating the actual scene geometry would open up
additional possibilities to improve the virtual light alignment.

Since virtual polygon lights represent a surface area with constant
diffuse emission, variations in VPL density cannot be accurately
approximated. Clustering VPLs from different bounces or different
light sources in a single step would lead to artifacts. Sparse VPLs
from higher order bounces would disturb the clean shadow edges
of the direct light, and lead to significantly reduced accuracy in
the computation of the first indirect light bounce. Separating VPLs
per light source and per bounce not only improves the utilization
of CPU and GPU, it also avoids these problems, adapting to the
properties of both the primary light as well as higher light bounces.
Figure 9 shows the same scene rendered with a single clustered set
of virtual lights and with separate clustering for each bounce.

A final problem are concave surface outlines formed by VPLs that
are often created by shadows in the scene. Since only the convex
hull of VPL clusters is approximated, the resulting polygonal lights
might transport energy to hidden regions. We do not particularly ad-
dress this problem, since by increasing the number of virtual lights,
erroneous regions are successively split and removed.

7.2 Virtual Light Comparisons

As discussed by Hasan et al.[2009], using point lights leads to
illumination spikes or energy loss if the illumination spikes are
clamped. For this reason a number of different light models have
been developed: disk lights (point, normal and area) with simple
form factor approximation [Wallace et al. 1989] used in [Prutkin
et al. 2012], sphere lights [Hašan et al. 2009], and VPL clusters
[Dong et al. 2009] (these were called “virtual area lights” in the
publication, but their evaluation is performed as a collection of in-
dividual point lights). In Figure 10, the virtual polygon lights are
compared to these previous virtual light models.

The comparison illumination scenario consists of a single light
bounce originating from a spot light. The ground truth image was
rendered using a path tracer. In the comparison, all results were ren-
dered using 197 virtual lights and evaluated in 5-times enhanced er-
ror images. Clustered lights use a total of 20k VPLs and have been
created from the same clusters. The result of the original instant
radiosity algorithm [Keller 1997] (column 1) clearly is the most bi-
ased, since the point lights miss exact information of local surfaces.
Adding local cluster information, approximating an area and bet-
ter orientation, the disk lights (column 2) already result in a good
overall light transport. However, the point-based evaluation still
results in dark corners. Sphere lights (column 3) have a different
local evaluation yielding better results in corners, but tend to trans-
port more erroneous light to their surroundings. By using all VPLs
(with clustered visibility) to distribute the light energy, an overall
accurate result is produced (column 4). The artifacts of darkened
corners are smaller but very visible. Polygon lights (column 5) cre-
ate a similar result and additionally resolve the artifact of missing
light in corners. On curved surfaces, the accuracy is reduced to the
polygonalization of the emitting geometry, but better than disk or
sphere shapes due to their better adaptability to the surfaces.

This comparison shows that the most accurate diffuse virtual light
based global illumination solution can be produced by choosing the
type of virtual light depending on the property of the VPL cluster:



Figure 9: The left images are generated from clustering all bounces together, for the right images each bounce is clustered separately. Note
the difference in the virtual light sources for the lit areas created by the direct illumination through the arches, and the incorrect illumination
in the left two close-ups.
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Figure 10: Comparison of different virtual light types (197 lights/clusters created from 20,000 VPLs baked to a 3.2 MTexel light map): the
top row visualizes the lights in the result, the two bottom rows show the 5-times enhanced inverse absolute error with respect to a path-tracing
solution in two close-ups. Note that all point-evaluated virtual lights (Point Lights, Disk Lights, and VPL clusters) result in dark edges where
two facing illuminated surfaces meet. Polygon lights strongly reduce this problem, but cannot completely avoid it for curved surfaces.

Polygons are to be preferred whenever an accurate outline of a pla-
nar region is given by a high VPL density. In planar regions with
less density (e.g. higher bounces), where the risk of artifacts due
to badly aligned polygon lights is increased, disk area lights can
be used instead. Finally, clustered VPLs or sphere lights provide
a good compromise to transport light of clusters with variations in
VPL orientation and location.

7.3 Performance

We tested our approach on several scenes from different indus-
trial fields as well as reference scenes. Figure 11 shows a mu-
seum scene (a) and an office (b), both modeled for industrial eval-
uation of different lighting scenarios, a penthouse model created
for architectural planning and visualization purposes (c), and the
Crytek Sponza Atrium, representing a part of a typical game level
(d). These scenes differ significantly from each other: the Crytek
Sponza Atrium is optimized for real-time applications, whereas the

office and especially the penthouse scene are partly highly over-
tesselated and suffer from erroneous geometry. While this affects
the calculation time due to the increased rendering effort, our ap-
proach still delivers a convincing lighting solution within an ac-
ceptable time frame.

Our application is implemented in C# and uses the DirectX 10
graphics API. The benchmark system is an Intel i7-920 processor
and a NVIDIA Quadro 6000 graphics card with 6GB memory.

The pre-processing step described in Section 4 involves three ren-
dering passes (points, lines and triangles), readback of the data and
building the light-map geometry Tuv + Puv . These tasks have to
be performed once at loading time of the scene and when geome-
try is added during the interaction. The complexty of the light-map
geometry strongly depends on the relation between geometry tes-
sellation and the light-map resolution, while the processing time
primarily scales with resolution. The following table shows the va-
riety in different scenes:



(a) 8 sec / 2300 VLs (b) 24 sec / 2200 VLs (c) 30 sec / 3400 VLs (d) 15 sec / 1500 VLs

Figure 11: Results generated with our approach: (a) a museum scene with high-frequency shadows and complex geometry, (b) an office illu-
minated by large area lights, (c) a penthouse demonstrating indirect light propagation and (d) the Sponza Atrium in a demanding illumination
setting with 100 primary light sources.

Scene # triangles # Tuv # Puv time resolution
Museum 213,572 36,646 75,786 0.64s 2× 4k / 5.15MP
Sponza 279,163 179,328 319,538 1.15s 4× 4k / 14.2MP
Office 716,960 123,795 226,647 0.84s 2× 2k / 3.68MP

The number of additional points seems high, but in relation to the
area covered by triangles, only about 5% of all texels are set by
points. Since the rendering time is bound by the evaluation in the
pixel shader, illumination information is created at equal costs per
texel.

The time for the virtual light creation primarily depends on the
number of initial VPLs. The graphs in Figure 12 show the mea-
sured total computation times with and without preliminary plane
search. The time for the photon simulation to create the VPLs scales
linearly at a rate of about 100k VPLs per second (included). The
clustering is the most time-consuming task of the light creation and
linearly scales with a fixed cluster size as well (in this range of
VPLs, the logarithmic part of the algorithmic complexity does not
yet come into play). The variations with enabled initial plane clus-
tering are probably caused by scene-dependent detection of finer
detailed planes.
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Figure 12: Runtime of the light creation task dependent on the
number of VPLs with 50 VPLs per cluster as target.

The GPU-based light-map computation consists of two passes per
virtual light. First, rendering a cube shadow map (2562 × 6) and
second, accumulating the illumination by rendering the light-map
geometry Tuv + Puv . The PCSS visibility has been evaluated with
5 occluder search samples and 8 filter samples. Figure 13 shows the
average time of accumulating a virtual light dependent on the light-
map resolution. The timings were measured by averaging the com-
putation time of 7k virtual lights. The ratio of polygon to sphere
lights was approximately 1:1.

The accompanying video demonstrates that our system is well
suited for interactive lighting design applications. The direct and in-
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Figure 13: Average virtual light evaluation time.

direct illumination is stored in a light-map, allowing arbitrary com-
plex lighting scenarios. When objects or lights sources are moved,
the direct illumination of affected lights is first subtracted from the
light-map and then rendered in real-time during the interaction. The
light map recalculation is scheduled interleaved with the scene ren-
dering and blended with the old solution, continuously allowing in-
teractions and illumination adjustments. Note that duplicating the
light sources in the demonstration also invokes an update of the
light-map layout including the rasterization test to rebuild the light-
map geometry.

8 Conclusion and Future Work

We have shown a fast method to pre-compute light maps for a
complete scene using virtual polygon lights, avoiding long pre-
computation times. With consistent results in seconds and high-
quality results in under a minute, we see the main application in
lighting design for computer games and other light editing appli-
cations where fast turnarounds can drastically improve productiv-
ity, and where noise or flickering artifacts – often visible in walk-
throughs using other interactive global illumination solutions –
have to be avoided. Since it is light-map based, our solution of-
fers high-quality and high frame-rate even on low-end devices.

Visibility computation is currently the most expensive task with
potential for optimizations. Imperfect Shadow Maps [Ritschel
et al. 2008] for example enable fast but crude visibility approxi-
mations. We would also like to evaluate the applicability of alterna-
tive soft shadow approximations such as Convolution Soft Shadows
Maps [Annen et al. 2008].

Finally, it may be favorable to incorporate the idea of light cuts
[Walter et al. 2005]: although individual light-source selection can-
not be used for each light-map texel in our method, it could be
applied in a large, tiled scene to reduce the number of virtual light
sources that have to be evaluated, allowing the application of our
method to extremely large scenes.
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