
Lazy Incremental Computation for Efficient Scene Graph Rendering
(draft)

Michael Wörister, Harald Steinlechner, Stefan Maierhofer, and Robert F. Tobler
VRVis Research Center, Vienna, Austria∗

Abstract

In order to provide a highly performant rendering system while
maintaining a scene graph structure with a high level of abstraction,
we introduce improved rendering caches, that can be updated incre-
mentally without any scene graph traversal. The basis of this novel
system is the use of a dependency graph, that can be synthesized
from the scene graph and links all sources of changes to the affected
parts of rendering caches. By using and extending concepts from
incremental computation we minimize the computational overhead
for performing the necessary updates due to changes in any inputs.
This makes it possible to provide a high-level semantic scene graph,
while retaining the opportunity to apply a number of known opti-
mizations to the rendering caches even for dynamic scenes. Our
evaluation shows that the resulting rendering system is highly com-
petitive and provides good rendering performance for scenes rang-
ing from completely static geometry all the way to completely dy-
namic geometry.

CR Categories: I.3.2 [Computer Graphics]: Graphics Systems

Keywords: rendering, optimisation, scene-graph

1 Introduction

Designing a scene representation for a rendering system poses the
challenge of choosing the appropriate trade-off between providing a
high level of abstraction and achieving high rendering performance.
Thus in the scene graph systems with the highest rendering perfor-
mance, the abstraction level is limited, and the construction of scene
graphs is heavily influenced by performance considerations [Rohlf
and Helman 1994; Reiners et al. 2002; Burns and Osfield 2004].
This severely increases the complexity of scene graph design for
complex, dynamic scenes. On the other hand scene graph systems
that provide a high level of abstraction [Tobler 2011] are limited in
their rendering performance, due to a semantic structure that cannot
be easily optimized.

Some mitigation of this problem is provided by the use of so-called
render caches. Typically these render caches consist of stores as-
sociated with nodes in the scene graph, that contain all rendering
calls and associated arguments that are caused by the subgraph be-
neath the respective scene graph node. Thus the traversal of the
subgraph can be omitted by just executing the rendering calls in
the cache. Normally render caches are built for only those portions
of the scene graph that do not dynamically change from frame to
frame. If changes are detected, each of the affected caches must be
completely rebuilt.

∗email:{woerister,hs,sm,rft}@vrvis.at

In order to improve the performance of such dynamic scenes, and to
provide a strong separation between a scene graph system that oper-
ates on a high level of abstraction and a performant render backend,
we introduce links from all sources of changes to the scene graph
(e.g. user events) to each of the affected parts of each rendering
cache that needs to be updated. These links are stored in a so-
called dependency graph that completely eliminates the traversal
cost of the scene graph, as long as the structure of the scene graph
does not change. Here we use concepts introduced by incremental
computation in order to optimally perform these tasks: given some
input data x (in our case the scene graph) and the computation re-
sult f(x) (in our case the rendering caches created from the scene
graph), find the necessary changes of f(x) given some changes in
x [Ramalingam and Reps 1993].

By allowing dynamic updates of parts of rendering caches, we
avoid costly rebuild operations of render caches in dynamic scenes.
Additionally, due to the structure of our rendering caches that
store instructions to setup the rendering pipeline as well as com-
mands for emitting draw calls, all the typical rendering optimiza-
tions such as state sorting, removal of redundant instructions, and
super-instructions can be performed and combined arbitrarily on
our render caches without affecting the structure of the scene graph,
thereby completely separating performance optimizations from the
high level design of the scene graph.

In summary we introduce the following contributions:

• An update propagation mechanism that operates on a depen-
dency graph which is synthesized from the scene graph. We
utilize a modified version of Hudson’s update propagation
mechanism (see next section) to keep values consistent in an
on-demand manner. We introduce a lazy marking scheme that
is adapted to the needs of typical rendering applications by
avoiding the eager marking and evaluation of visibility-culled
scene parts in order to increase updating performance.

• We introduce rendering caches which are sub-structured so
that parts of the caches can be updated incrementally and ex-
ecuted without the need to traverse scene graphs.

• And finally our system introduces a clean separation of scene
graph structure and rendering caches that allows to apply a
number of known optimizations on the rendering caches with-
out affecting the scene graph even for dynamic content.

2 State of the art

Many existing scene graph systems make use of render call caching
in some form or other. The most common approach is the em-
ployment of OpenGL Display Lists. Open Inventor [Wernecke
1993], OpenSceneGraph [Burns and Osfield 2004], Java3D [Sow-
izral et al. 1997], and NVIDIA SceniX [NVIDIA Corporation 2013]
all provide support for building display lists that capture the ren-
dering instructions of scene graph nodes. This can provide tremen-
dous performance gains, especially when used in conjunction with
OpenGL’s immediate mode.

However, once such a display list is built, it cannot be modified.
As a consequence, whenever the underlying scene graph changes,
all affected display list caches must be destroyed and rebuilt from

scratch, canceling out any positive caching effects. Therefore
scenes containing a high percentage of dynamic content derive no
benefit from this caching approach.1

Microsoft’s Windows Presentation Foundation (WPF) [Microsoft
2013]—a retained-mode UI system—uses a similar approach. In-
ternally it keeps the so-called visual tree, which is a kind of scene
graph where each node represents a visual element and edges sig-
nify parent-child relationships between those elements. Each node
caches a vector graphics instruction list, which is used to draw the
tree in a depth-first left-to-right traversal. The system’s documen-
tation gives no indication that the graphics instructions of a visual
node can be updated incrementally: A change to the node causes
the whole instruction cache of the node to be re-created. The ap-
proach taken by WPF is therefore very similar to the display list
strategy taken by Open Inventor for example.

A more sophisticated, hierarchical caching system is proposed by
Durbin et al. [Durbin et al. 1995] As opposed to relying on the
OpenGL driver implementation of display lists, rendering calls are
stored explicitly in main memory. The system builds caches in three
phases. First, for each scene graph node an instruction array with
GPU commands and their precomputed arguments (e.g. accumu-
lated transformation matrices) is created. In the second phase, re-
dundant instructions—setting graphics pipeline state that is already
set—are purged from the array. In the third and final phase, the in-
struction arrays of child nodes are combined at parent nodes so that
each node contains a cache representing the whole subgraph be-
low. This way large parts of a scene graph can be rendered without
traversing it and without performing unnecessary work.

In order to support dynamic content, the caching system at runtime
collects statistical data on the changes done to the scene graph and
using this data tries to estimate where the cost of creating caches
will amortize over time. Yet again, when the scene graph changes,
affected caches need to be destroyed and rebuilt.

None of the above systems allows for truly incremental cache up-
dates such as we propose in this paper. This makes these systems
very sensitive to any kind of change in the scene data. In order
to find a solution without this limitation, we looked at the field of
incremental computation, which has been investigated for a long
time [Ramalingam and Reps 1993]. One of the first areas where
incremental computation was thoroughly examined were language-
based editors that need to continuously analyze the edited source
code, without disrupting the programmers work flow by perform-
ing the analysis from scratch even after only small changes.

There has also been a recent surge of interest in incremental compu-
tation (e.g. [Hammer et al. 2009; Acar et al. 2010; Burckhardt et al.
2011; Chen et al. 2012]) following Acar’s work on self-adjusting
computation [Acar 2005], which strives to provide a general pur-
pose method for making arbitrary programs incremental. Yet, due
to the similarity between abstract syntax trees in programming lan-
guages and scene graphs in computer graphics, it seems more ap-
propriate to us to use the earlier, specialized concepts for our pur-
poses.

Part of the semantic of a programming language can be de-
scribed by so-called attribute grammars [Knuth, Donald E. 1968],
which—in addition to the language’s syntax given as a context-free

1Note that a combination of display lists with uniform buffers can pro-
vide a simple mechanism for achieving dynamism. In theory, it would be
possible to use display lists as a limited replacement to our instruction ar-
rays. Display lists, however, do not provide any way of providing the
updated data for any of the referenced uniform buffers, which makes re-
creating them from scratch the only option when no dependency data about
their argument buffers is available.

grammar—also define how certain attributes (e.g. the set of vari-
able bindings) can be calculated from parent or child nodes in the
abstract syntax tree of the program. This is very similar to how at-
tributes, like material properties or spatial transformation, are prop-
agated in a scene graph.

The “standard optimal algorithm” [Hudson 1991, p. 2] for in-
cremental attribute evaluation in trees was developed by Reps et
al. [Reps et al. 1983]. The algorithm builds a dependency graph
that denotes which attribute instances in the tree depend on which
other attributes. Upon modification to the tree or attribute values
it is then able to propagate resulting changes throughout the data
structure in optimal time, i.e. it performs only O(|AFFECTED|)
steps, where AFFECTED is the set of changed attribute instances.

In the context of scene graph rendering, a modified version of this
algorithm could be used to incrementally update those parts of ex-
isting render caches which are affected by a change. However, since
in a graphical setting only a portion of the scene is visible, not all
render caches need to be up-to-date if they will not be used for
rendering. As the algorithm by Reps et al. will always propagate
changes throughout the whole graph, regardless of visibility, it is
likely to perform unnecessary work.

An algorithm better suited to this specific constraint of visibility
is presented by Hudson. [Hudson 1991] This algorithm performs
attribute updates (mostly) lazily, starting evaluation at attribute in-
stances for which a demand exists. Again, the relationship between
attribute instances is represented by a dependency graph, stating
which instances need which other instances to compute their value.
The change propagation process is split into two phases:

Marking. The first phase marks nodes in the dependency graph
as out-of-date, starting at known points of change and following
the edges of the graph. This phase is performed in an eager manner.
However, it is rather light-weight and the marking traversal can stop
when encountering a node that is already out-of-date. At the end,
all attribute instances in the system will correctly have their out-of-
date flag set.

Evaluation. Starting at attribute instances for which a demand
exists (because they are “visible”) the algorithm recursively updates
attribute values. If an attribute is up-to-date, no work has to be done.
Otherwise, all input attributes which are out-of-date are updated
(this is the recursive step) and then the attribute value itself can be
computed. If the attribute value computation contains conditional
branches, the algorithm will only traverse parts of the graph that are
needed: First, the part representing the value(s) needed for checking
the condition, second the branch indicated by the outcome of the
condition. The other branch remains untouched. At the end of this
phase, all attribute instances in demand are up-to-date, which is
now indicated by their correctly set out-of-date flags.

This surprisingly simple algorithm provides good performance
and—in a slightly modified version—is what we chose to use for
our incremental caching system.

Incremental methods have already been applied in the computer
graphics field, especially where expensive computations (such as
lighting) meet with interactive edit-review cycles. Examples are the
technique by Laine et al. [Laine et al. 2007]—which incrementally
maintains a set of virtual point lights for radiosity computations—
or the Lightspeed system [Ragan-Kelley et al. 2007]. However,
these systems use incremental algorithms specialized for their spe-
cific computation.2 Lightspeed separates static and dynamic sub-

2Lightspeed uses a computation graph to manage the complex depen-

computations. Static computations generate image space caches,
which are used by dynamic parts running on graphics hardware.
Sitthi-amorn et al. [Sitthi-amorn et al. 2008] exploit temporal co-
herence in scenes and optimize shaders automatically by utilizing a
reprojection cache storing the results of previous frames.

Since modeling applications naturally have to deal with scenes or-
ganized in deep hierarchies, it is not surprising that the modeling
software Maya [Autodesk 2013] utilizes a dependency graph for
attribute evaluation. Maya uses eager marking and lazy evaluation
similar to Hudson’s algorithm [Hudson 1991], that propagates in-
validation information to all parts of the scene irrespective of visi-
bility. To the best of our knowledge, Maya does not employ render
caches with in-place updates and non-local instruction array opti-
mization.

Most incremental techniques in computer graphics [Laine et al.
2007; Ragan-Kelley et al. 2007; Sitthi-amorn et al. 2008] use algo-
rithms very specialized to their task. In contrast to this, we try to use
the more extensible basis of dependency graphs. While a special-
ized algorithm exploiting problem-specific properties will always
be faster than solutions with less information available, the concept
of data and computation dependencies is easily understood and of-
ten goes a long way towards practical incrementalization of a task
at hand. This paper shows how a dependency graph can be derived
from a given scene graph and how the dependency information can
be used to build better render caches than is possible without it.

3 Lazy incremental computation for scene
graphs

In a scene graph based rendering system repeated traversal of the
same node hierarchy incurs an unnecessary overhead if large parts
of that hierarchy do not change from frame to frame. In order to
avoid this inefficiency, many scene graph based rendering systems
use caches to store the sequence of rendering calls generated by
a traversal (or some other equally compact representation). These
caches can be associated with nodes in the scene graph and obviate
the need to traverse the sub-nodes of the respective node (for an
example see Figure 1.

Rendering(Cache

Figure 1: A rendering cache captures all rendering instructions in
a subgraph and takes over its rendering responsibilities.

For static scenes it may be possible to use a single rendering cache
for the complete scene, however even in this case it is normally
beneficial to split the rendering cache into various partial caches,
since due to visibility culling only part of the scene may be rendered
at any one time (see Figure 2). Rendering caches are normally built
in such a way that they can only be rendered completely or not at
all, no culling of parts of a cache is usually possible.

dencies within its multi-pass rendering work flow, however, this graph is
not itself used as a means to incrementality. The incremental aspects of
the system stem from (1) the partial evaluation done in the preprocessing
step and (2) the specialized light caching exploiting the linearity of lighting
calculations.

Figure 2: Rendering caches (blue nodes) can be built for a com-
plete scene graph or for parts of a scene graph.

As long as the scene does not change, these rendering caches do not
need to be modified, but as soon as any change in a dynamic scene
takes place, a number of nodes in the scene graph are affected, and
subsequently some of the rendering caches need to be updated. Fig-
ure 3 shows an example scene graph with two modified attributes a
and b (with the sub-graphs affected by these attributes indicated in
red), that require a subsequent update of the two rendering caches
in the graph.

b

a"""

Figure 3: Modifying some attributes (a and b) requires the up-
date of rendering caches (blue nodes) that capture on them (affected
scene graph parts are shown in red).

Depending on the nature of the changes in the scene graph, we need
to distinguish between two types of updates of rendering caches:

In-place updates. If a scene graph modification only changes the
value of a rendering cache without changing its structure, no allo-
cation of buffers and binding of resources has to occur, making this
kind of update fairly inexpensive (see example in Figure 4).

a b

Figure 4: An in-place update of a rendering cache due to a mod-
ification of an attribute (affected scene graph parts and rendering
cache parts shown in red).

Structural updates. If a scene graph modification gives rise to
some changes in the structure of a rendering cache, new buffers
have to be allocated and resources for the graphics hardware have
to be bound (see example in Figure 5). In the current implemen-
tation of our system these updates are not handled automatically.

A standard scene graph traversal is used for building all affected
render caches anew.

Figure 5: A structural update of a rendering cache due to the inser-
tion of a new sub-graph (affected scene graph parts and rendering
cache parts shown in red).

In-place updates can be implemented via simple call-backs that are
stored in the rendering caches. In order to efficiently compute
which parts of rendering caches need to be updated, it is neces-
sary to introduce the concept of a dependency system that maintains
meta data for each entity in the scene graph and describes on which
other parts within or outside the scene graph each entity depends.
The meta data in our dependency system introduces the following
roles:

Dependencies. A dependency is a stateful predicate that pro-
vides a way of determining if some item has changed with respect
to some former state of the item. It can be used to model predicates
like “Is object X within range (a,b)?” or “Has the camera moved
more than 10 units since the last check?” This functionality is im-
plemented by a version number. Every time the observed object
changes—according to the dependency’s definition of change—the
version number is incremented. This way every distinct state of the
observed object during its lifetime has a unique version number.
This version number can be used by other objects as an abstract ref-
erence to a specific state of an object. Consequently, other objects
can determine if their view of the observed object is still up-to-date
by a simple comparison of the dependency’s current version num-
ber and the version number the dependency had when last used by
the other object. The ability to efficiently determine if an object
described by such a dependency needs to be updated is key for im-
plementing an efficient dependency system. Changed dependencies
serve as triggers that cause the execution of the call-back functions
that are used to update all rendering caches.

Value Sources. A value source is an item in the scene graph or
global environment that is needed when computing the value of an
object that is dependent on it. An example for a value source would
be a transformation node, the value of which is needed to calculate
the model-transformation of a leaf of the scene graph that holds
geometry. A value source holds a set of dependencies that accu-
rately reflect when the value of the value source changes. For ex-
ample, if the transformation node mentioned above always changes
whenever a key is pressed, then the node must have a dependency
that increases its version number whenever this event occurs. Value
Sources serve as parameters of the update call-back functions.

Dependent Resources A dependent resource is an object whose
value changes whenever one of its dependencies changes. It uses its
value sources to compute its new value. In a rendering system the
buffers and parameters that are uploaded to the graphics hardware
are typically dependent resources. The update call-back functions
compute new values for dependent resources.

t1

g1

r1

t2

g2

r2

t3

g3

r3

d1 d2 d3 d4D = {d1, d2}

D = {d2, d3, d4}

D = {}

Figure 6: A small scene graph with transformation nodes as value
sources (ti), a number of dependencies for these value sources (dj),
a number of geometries (gk), and a number of dependent resources
(rl).

As an example (see Figure 6), consider three geometries (g1, g2,
and g3) in a scene graph, each of which is transformed by a transfor-
mation node (t1, t2, and t3). The transformations in turn are depen-
dent on a number of external events (d1, d2, d3, and d4) and are ar-
ranged in a stacked fashion. Each of the three geometries gives rise
to a dependent resource, dependent on their model-transformation
which is loaded onto the graphics hardware for rendering (r1, r2,
and r3).

The dependencies depicted in Figure 6 constitute all changes that
trigger modifications to the transformation nodes. These can be
caused by user inputs or by simulation results external to the scene
graph (e.g. a particle simulation computes new transformations for
moving particles).

t1

g1

r1

t2

g2

r2

t3

g3

r3

d1 d2 d3 d4

t1· t2

t1· t2 · t3

Figure 7: The dependency graph constructed from the scene graph
in Figure 6.

In order to explicitly represent all the necessary changes that need
to be computed, we define the so-called dependency graph: By in-
troducing intermediate value sources (in the example the two nodes
t1·t2 and t1·t2·t3) each with their own dependencies (in this case
other value sources provide the dependencies for the newly created
value sources), a complete chain of dependencies for each render-
ing resource is encoded in the dependency graph. Figure 7 shows
the dependency graph that has been built from the simple example
in Figure 6.

Note that the implied dependency in the scene graph—that leaf
nodes depend on all attributes above them—can be exploited to
avoid the complete and explicit computation of the dependency
graph. However, a more explicit representation of the graph can be
used to increase update performance: As an example, the explicit

creation of the multiplication nodes (in the example the two nodes
t1·t2 and t1·t2·t3) with stored multiplication results can be avoided
at the cost of doing the additional work of re-performing the matrix
multiplication t1·t2 if only dependencies d3 or d4 change.

The rendering caches that have been introduced into the scene graph
now consist of the rendering instructions for drawing the cached
subgraph, and the dependent resources that serve as arguments to
these rendering instructions. Rendering the contents of a rendering
cache involves two steps:

1. Make the arguments consistent with the scene graph they mir-
ror. This is done by triggering their update callback functions
(if necessary).

2. Execute the rendering commands in the order they are stored
in the cache.

As mentioned in the State of the Art section, we chose to use a
modified version of Hudson’s algorithm [Hudson 1991] to perform
change propagation, that is step (1) of the above two steps. Our
version of the algorithm performs the same two tasks of (a) find-
ing the set of dependent resources that need to be updated and (b)
subsequently actually performing the update callbacks of these re-
sources.

However, in contrast to Hudson’s algorithm, we want to take visi-
bility information into account for out-of-date checking too: only
for rendering caches that have survived visibility culling the out-of-
date check should be performed. Therefore we replace Hudson’s
eager out-of-date marking with on-demand out-of-date polling. To
implement this, every updateable node in the dependency graph
stores the set of all transitively reachable dependency predicates
and the reference version number for each dependency. An out-of-
date check for a given dependent resource can then be performed by
polling the version number of each of its dependencies and compar-
ing it with the reference version number.

The polling of unculled nodes is additionally sped up by building
an inverted index data structure [Knuth, Donald E. 1998, pp. 560-
563] per render cache, mapping dependency objects to the list of
their dependent resources. This dependency index, as we call it, al-
lows to touch unchanged dependencies only once per render cache.
Changed dependencies still have to be read once per dependent re-
source for keeping reference version numbers consistent.

Note that some nodes in the dependency graph are already needed
to perform culling, namely bounding boxes and everything that is
needed to compute them. For these resources the out-of-date check
cannot be eliminated as the culling system will always place de-
mand on them. However, the concrete implementation of depen-
dency predicates can be used to filter out changes insignificant to
bounding box updates in order to at least avoid unnecessarily re-
computing bounding box and transformation values.

4 Integrating incremental caching into scene
graphs

In our prototypical implementation of the incremental caching sys-
tem we introduce cache nodes which mark the subgraph under them
for caching. This node has the responsibility of creating the in-
struction array and the dependent resources that are the arguments
of these instructions. It also has the responsibility of keeping these
dependent resources up-to-date, as their value sources change. To
this end, it also stores the dependency index mentioned in the pre-
vious section.

Building a rendering cache is very similar to performing a regular
rendering traversal. When a cache node is reached by a render-

ing traversal, and no cache has been built yet, it will send a so-
called ExtractCachingDataTraversal into the subgraph
below. This special traversal behaves very much like the regular
rendering traversal but instead of calling into the graphics hard-
ware API, it records these calls as instructions, adding them to the
instruction array of the cache. For every instruction argument, it
allocates a dependent resource. The information needed for cre-
ating a dependent resource is: (1) the semantics of the resource
(e.g. model-transformation), and (2) the value sources of
the resource (e.g. the transformation nodes affecting the transfor-
mation at the leaf node). From this information the dependencies of
the dependent resource (the union of the dependencies of its value
sources) and the update callback can be inferred. The dependent
resource is then added to the dependency index. When the traversal
is finished, instruction array and dependency index are completely
populated.

Now that the cache is built, it can take over the responsibility of
rendering the graph below the cache node. From now on, when a
rendering traversal reaches the cache node, it will execute the ren-
der cache instead of descending into the sub-graph. As described
before, this consists of first updating the instruction arguments us-
ing the dependency index, and then executing the instruction array.

5 Rendering Cache Optimizations

With the introduction of rendering caches, the high-level data
model of the scene graph is cleanly separated from the rendering
specific data structures in these caches. Thus it is possible to per-
form a number of optimizations without affecting the high-level
data model. We perform the following optimizations on the ren-
dering caches for maximizing rendering performance:

Removal of Redundant Instructions. Often the correct GPU
program, texture, or other graphics API state is already set to the
correct value before a certain geometry is rendered. By analyzing
the instruction stream it is therefore possible to remove instructions
that set state to a value that it is known to already have.

This optimization is often already performed by the graphics driver.
But the driver can only filter out GPU instructions after the call to
the graphics API has been made while we can do so before any API
interaction. The optimization is also done by existing scene graph
toolkits, such as OpenSceneGraph and IRIS Performer [Rohlf and
Helman 1994, Section 2.2.3]. However, these systems perform the
filtering every frame before drawing, while with rendering caches
it only has to be done once when the instruction array is built.

Superinstructions. A common optimization in byte-code inter-
preters are so-called superoperators [Proebsting 1995] or superin-
structions [Ertl and Gregg 2003, p. 20]. These work by folding
common sequences of primitive instructions into larger, semanti-
cally equivalent superinstructions. The same can be done for ren-
dering instructions stored in main memory. The benefit is reduced
instruction dispatch overhead. In the case of our implementation
this means a smaller number of virtual function calls and type-casts.

State Sorting. Graphics hardware can work most efficiently
when it is able to process large batches of data without switching
internal state such as GPU programs, render target, or textures. It
therefore is beneficial to sort the render jobs for opaque geometry
in order to reduce these kinds of state changes before building the
instruction stream from them. The sorting algorithm uses a cost
model that assigns larger penalties for costly state changes (such as
switching the render target) and smaller ones to cheaper ones (such

as switching vertex buffers).

This is a standard optimization performed by most scene graph
toolkits. However, the use of render caches allows to perform the
optimization without modifying the scene graph, and the optimiza-
tion only has to be performed once when the cache is built (as op-
posed to every frame, as done by OpenSceneGraph and IRIS Per-
former [Rohlf and Helman 1994, Section 3.1.3] for example). Note,
that this optimization cannot be performed at driver level since draw
calls cannot be reordered in general. We apply state sorting only if
admissible i.e. no transparent geometry is rendered.

Transformation Matrix Memoization. Normally in a scene
graph, transformation matrices are accumulated along the path until
a leaf node is reached. Like Durbin et al. [Durbin et al. 1995] we
achieve a speedup by caching the once computed end result together
with the instruction that uses it (the dependent resources in our sys-
tem). However, when a transformation node changes its value, the
cached matrices for all paths that contain that node are invalidated.
To alleviate the burden of updating the cached matrices, we also
optionally cache all intermediate results of the matrix accumulation
process. With these intermediate results available, only values after
a changed transformation node have to be updated and leafs sharing
path prefixes can share the cached results for these prefixes.

Parallel Updates of Dependent Resources. Since the depen-
dency system defines a clean computational model for updating de-
pendent resources, it is possible to devise a strategy for safely per-
forming these resource updates in parallel on multiple CPU cores.
For scenes with a high percentage of changing resources (such
as transformations in uniform buffers) a parallel update strategy
achieves significant performance gains.

Generalized Draw Sorting. With dependencies rendering caches
can refer to arbitrary attributes of the scene like model transfor-
mations and bounding boxes. This for example allows us to auto-
matically sort draw calls relative to the current viewport. Without
overlapping geometry this feature can be used to implement cor-
rect back to front rendering. Alternatively, performance in opaque
scenes can be improved with front to back rendering exploiting
early z optimization.

6 Implementation

Our implementation of the scenegraph as well as the rendering
backend is written in C#. We use SlimDX3 which exposes DirectX
as a managed class library, usable from C# directly. As graphics
API we use Direct3D 11.
As described in the previous section render caches contain arrays of
rendering instructions. These virtually reflect D3D device methods,
but at slightly higher abstraction level which allows to target other
graphics APIs such as OpenGL. Examples for render commands
are:

• SetVertexShader(IShader shader) uses a shader
as input and binds it to the rendering pipeline when executed.

• SetConstantBuffers(Dictionary<int,
IConstantBuffer> constantBuffers,
ShaderType shaderType) assigns a set of con-
stant buffers to the shader stage specified by shaderType.

• SetDepthStencilState(IDepthStencilState
state) binds the specified state to the rendering pipeline.

3http://slimdx.org/, accessed on Feb. 15th, 2013

Whenever possible instruction arguments are directly allocated as
GPU resources, like buffers (e.g. constant buffers, vertex buffers).
Note that GPU resources indeed match our notion of dependent
resources and therefore integrate with the dependency system di-
rectly.
In order to execute a render cache we could simply execute each
instruction sequentially by calling its Execute() method. Our
improved implementation however creates so-called native instruc-
tions of these render commands. Native instructions are specialized
versions of the original render commands with their arguments al-
ready prepared for the specific graphics API. This further reduces
execution overhead because all arguments can be converted to the
appropriate type at optimization time instead of execution time.

7 Results

In order to assess the impact of the use of dependencies on render-
ing performance we focussed on benchmarks with a high number
of draw calls. Typical optimizations like occlusion culling, view
frustum culling and pre-packing and transforming geometry are all
geared towards reducing the number of draw calls, however in the
most highly demanding scenes these optimizations alone are some-
times not sufficient to achieve acceptable rendering speed. Thus
performing the measurements in benchmarks with a large number
of draw calls highlights the performance in worst-case scenarios.
Based on the same considerations we also switched off visibility
culling, ensuring that each of the geometries in our benchmark
scene causes a draw call that needs to be performed.

For all our results we used an Intel(R) Core(TM) i7-3770 @
3.40GHz (4 cores with Hyper-Threading), 32GB RAM, 64bit Win-
dows 7 and an NVIDIA GeForce GTX 680 graphics card with
2048MB memory. OpenSceneGraph [Burns and Osfield 2004] bi-
naries are compiled with highest compiler optimization -O2. Our
system is implemented in C# and runs on top of .NET 4.0. In
order to warm up the system we discard the first iteration of each
test run.

7.1 Static Scenes

First, we investigated the performance characteristics of the incre-
mental caching system with a scene that does not change over time,
but causes a high load of the graphics system. As rendering caches
mostly minimize scene graph traversal overhead, we tried to make
this the varying factor in our test setup while other factors are fixed.
To achieve this goal, we created a configurable synthetic test scene
containing different numbers of spheres, each with a different num-
ber of triangles. To keep the GPU workload roughly constant, all
configurations contain approximately 1.6 million triangles. These
triangles are distributed over a varying number of geometry nodes
which leads to different amounts of traversal overhead. Eight differ-
ent surface configurations are distributed evenly over the spheres,
each using a diffuse texture map, a normal map, and a shared en-
vironment map. There is no visibility culling involved in this test
setup: everything is considered visible in every frame (see Figure
8).

The results of the test runs with different geometry counts (but con-
stant triangle count), comparing our traversing renderer with our
caching renderer are shown in Figure 9. Note that each geometry
causes a single draw call. As can be seen, the time needed to render
a frame (frame time) increases linearly with rising geometry count,
with and without caching enabled. However, as can also be ob-
served, render caches improve performance consistently by a factor
of about 2.6 in this test setup. This suggests that traversal indeed
is the performance bottleneck of the traversing renderer since the
sequence of graphics API interactions is nearly the same in both

Figure 8: Screenshot of our worst case test setup designed to cause
a high load on the graphics pipeline: the camera slowly rotates
around this grid of spheres which thus remains inside the view frus-
tum at all times.

0

50

100

150

200

250

3 8 13 18 23

Fr
am

e
Ti

m
e

(m
s)

Geometry Count (thousands)

uncached
cached

Figure 9: Comparison of frame-times for our reference implemen-
tation with the proposed caching mechanism in our static scene.
While the total scene complexity (number of primitives) is constant
the number of geometries (equivalent to draw calls) varies to show
the overhead due to the traversal of the scene graphs.

cases. The large difference is due to our use of a semantic scene
graph as introduced by Tobler [Tobler 2011]. The high flexibility
and clean semantic model of this approach is normally hampered by
a significant traversal cost. The use of rendering caches completely
eliminates this deficiency.

As mentioned before, rendering caches allow for a number of opti-
mizations without modifying the underlying scene graph structure.
Figure 10a shows the effects of enabling different combinations of
optimizations in the test scene at 22736 geometries. Here it can be
observed that only configurations with the state sorting optimiza-
tion enabled yield additional performance gains while the frame
time does not change for the other configurations. This can be
explained under the assumption that unoptimized caching already
makes the application entirely GPU-bounded. The optimizations
that solely affect the CPU-side (removing redundant instructions
and super instructions) cannot achieve any visible improvement
(the CPU is already waiting on the GPU, the optimizations just
make it wait a greater percentage of the time). The state sorting
optimization allows the GPU to process the data more efficiently
and thus has a visible effect on frame time.

Figure 10b shows that the super instruction and redundancy re-
moval optimizations actually do have an effect on the CPU work-
load. These tests were run with the same settings but without actu-
ally calling into the graphics API, in order to completely eliminate
any interaction with either the GPU or the graphics driver. Here

0

50

100

150

200

250

Fr
am

e
Ti

m
e

(m
s)

No Caching

Caching

Redundancy Removal

State Sorting

State Sorting + Redundancy

Super-Instructions

All

(a) Frame times with rendering enabled.

>168

0

1

2

3

4

5

Fr
am

e
Ti

m
e

(m
s)

No Caching

Caching

Redundancy Removal

State Sorting

State Sorting + Redundancy

Super-Instructions

All

(b) CPU only frame times with rendering disabled, i.e. no DirectX calls.

Figure 10: The benefit of different optimizations applied to a static
rendering cache containing 22K objects with randomly assigned
material properties. Note that some optimizations gain no addi-
tional speedup (10a) in our test scene although CPU overhead is
reduced significantly (10b).

the traversing renderer needs around 168 milliseconds to traverse
the scene graph. In contrast, instruction array execution takes un-
der 4 milliseconds. The other optimizations can reduce this further,
however as mentioned before, the difference does not become vis-
ible when the GPU is enabled, but does free up CPU resources for
additional application-specific processing.

To summarize, without caching the application is traversal and
therefore CPU-bounded, while it becomes GPU-bounded when
caching is enabled. As the caching system (apart from the state
sorting optimization) only affects the CPU-side of the rendering
process, this already poses an important goal of the caching sys-
tem: Even for a flexible, but inefficient scene graph implementa-
tion the performance bottleneck can be moved to the GPU. This
was shown for scenes with a high numbers of geometry nodes (in
the thousands).

However, as the scene graph traversal of a single node is un-
likely to be the performance bottleneck, caching and traversing ren-
derer have to start with similar performance for very low geometry
counts. To find out where the scene graph traversal becomes the
limiting factor of the execution we have to look at frame times for
lower geometry counts. Figure 11 shows frame times for configu-
rations with geometry counts between 10 and 800. Here, it can be
seen that caching starts to have a positive effect beginning at around
200 geometries. It must also be noted that the test scene has a very
simple scene graph structure with no stacked transformation nodes
and no redundant group nodes. For settings with more complex
graph structure the turning point is likely to occur even earlier.

Table 1 shows the caching system’s cost in additional startup time.
Again, the numbers were measured for the largest scene with 22736
geometries. Loading the scene and creating a rendering cache will
take 120% of the time of just loading the scene normally. Enabling
additional optimizations will incur additional startup time.

The upper bound of the caching system’s memory consumption is
linear in the number of draw calls the cache captures. As the system
does not duplicate static geometry data and only stores additional
constant buffers, instructions and dependency information—all of

0
2
4
6
8

10
12
14
16
18
20

0 200 400 600 800

Fr
am

e
tim

e
(m

s)

Geometry Count

uncached
cached

Figure 11: Close-up of Fig. 9 with low number of draw calls. With
more than approx. 200 draw calls, caching pays off due to reduction
of CPU overheads.

Configuration Additional
startup time

Caching 20%
Caching+Redundancy Removal 20%
Caching+State Sorting 25%
Caching + Redundancy Removal,
State sorting, Superinstructions

49%

Table 1: Time required to optimize rendering caches for 22K ge-
ometry nodes

which are relatively lightweight—the memory overhead will mostly
account only for a small fraction of the entire application’s memory
consumption. In the largest test case shown before, the cache took
up 3 MB of main memory and 3 MB of graphics memory, with
the whole application using 324 MB main and 669 MB graphics
memory.

Our system is implemented in C# and uses a flexible scene graph
system similar to Tobler’s semantic scene graph [Tobler 2011], re-
sulting in a comparatively high traversal cost. We compared per-
formance of our test scenes in OpenSceneGraph 3.0.1, which does
not employ our caching system. Figure 12 shows that our cached
rendering algorithm (with state sorting enabled) can compete with
OpenSceneGraph’s frame times (and is even a bit faster). In static
test scenes our caching system was able to completely eliminate
traversal overhead and CPU-boundedness.

0

20

40

60

80

100

0 5 10 15 20

Fr
am

e
Ti

m
e

(m
s)

Geometry Count (thousands)

cached-optimized
OpenSceneGraph

Figure 12: Frame times for the static scenes with varying num-
ber of geometries in our system with render caches (state sorting
and redundancy removal enabled) and in OpenSceneGraph (single-
threaded).

7.2 Dynamic Scenes

An important feature of our incremental caching system is its abil-
ity to cope with non-structural scene changes. In Figure 13 we
measured frame times in our test scene with different percentages
of objects changing their transformation matrix each frame. As can
be seen, our incremental algorithm compares favorably with Open-
SceneGraph: in the non-parallel/non-threaded version, our incre-
mental update scheme outperforms OpenSceneGraph in all cases,
since it eliminates all CPU overhead and makes the benchmark
GPU bounded. OpenSceneGraph’s multi-threaded4 execution is
needed to compete with our non-parallel execution speed. Paral-
lelization does not benefit our method in this case, since even in
the non-parallel case the GPU is already supplied with rendering
commands at the speed it can handle them.

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90 100
Fr

am
e

Ti
m

e
(m

s)

Percentage of Dynamic Geometries

cached-optimized
cached-optimized-parallel
OpenSceneGraph
OpenSceneGraph, multithreaded

Figure 13: Frame times in scenes with varying percentage of mov-
ing objects. Transformation matrices are updated each frame –
these updates require additional CPU processing due to matrix
multiplication but also involve the GPU for resource updates.

For testing the effectiveness of our incremental update algorithm,
we built a hierarchical scene with the structure of an octree, where
two possibly dynamic transformation nodes are placed at each hi-
erarchy level (see Figure 14). This structure reflects the deep hi-
erarchies that are often present in editing applications that allow
interactive changes at every level of a semantic hierarchy.

group

g

t

t

t

t

t

t

group

t

t

t

t

t

t

t

t

g

t

t

group group

group

g

t

t

Figure 14: The scene graph structure of our benchmark for incre-
mental updates. t denotes transformation nodes, g denotes geome-
try nodes.

Figure 15 shows the performance of our system with memoiza-

4The exact threading model used was DrawThreadPerContext, which
provided the best performance on our test machine.

tion5 and parallel updates when compared to OpenSceneGraph for
a scene with 22736 geometries and a hierarchy depth of 8 trans-
formations. We vary the number of changed transformation nodes
right above the geometries from 0 to 100%. The use of the depen-
dency graph eliminates the traversal cost along each scene graph
path to a geometry, resulting in a significant speedup. Even the non-
parallel version already slightly out-performs the multi-threaded
OpenSceneGraph version, and both the version with memoization
and the version with parallel updates increase the gap. The compar-
atively small difference between the static and the fully dynamic
case, as well as the minimal speed-up attained by combining par-
allelization and memoization, indicates that our update system is
again fast enough to become nearly entirely GPU bounded. Never-
theless this clearly demonstrates the benefits of incremental compu-
tation in reducing the work load in dynamic scenes to the minimal
necessary amount.

0

20

40

60

80

100

120

140

160

180

0 10 20 30 40 50 60 70 80 90 100

Fr
am

e
Ti

m
e

(m
s)

Percentage of Dynamic Geometries

cached-optimized
cached-optimized-memoized
cached-optimized-parallel
cached-optimized-memoized-parallel
OpenSceneGraph
OpenSceneGraph, multithreaded

Figure 15: Frame times in a scene with a depth complexity of 8
transformations. The scene is structured as an octree with addi-
tional dynamic transformation nodes at each level, as shown in
Figure 14.

8 Conclusions and Future Work

We have applied the concepts from incremental computation to
real-time rendering of scenes based on semantically structured
scene graphs in order to efficiently handle dynamic content in a uni-
form and clean manner. Based on the usual optimization of using
rendering caches to speed up scene graph rendering, we constructed
the implied dependency graph and introduced an improved version
of Hudson’s method for computing the necessary updates. By us-
ing call-back functions for performing in-place updates of render-
ing caches, and exploiting the parallelization information inherent
in the dependency graph, we demonstrate that our system can elimi-
nate the costs typically associated with a semantic scene graph with
a high level of abstraction, and handle fully dynamic scenes with
minimal overhead.

In the future we intend to research the necessary extension for deal-
ing with structural updates and thus enable fast editing changes in
massive, fully dynamic scene graphs.

References

ACAR, U. A., BLELLOCH, G., LEY-WILD, R., TANGWONGSAN,
K., AND TURKOGLU, D. 2010. Traceable data types for self-
adjusting computation. In Proc. of the 2010 ACM SIGPLAN con-
ference on Programming language design and implementation,
ACM, New York, NY, USA, PLDI ’10, 483–496.

5The additional memory cost of enabling memoization amounted to
about 40 MB in the given test scene.

ACAR, U. A. 2005. Self-adjusting computation. PhD thesis, Pitts-
burgh, PA, USA. AAI3166271.

AUTODESK, 2013. Dependency Graph (DG) nodes.
http://docs.autodesk.com/MAYAUL/2014/ENU/
Maya-API-Documentation/index.html. Accessed:
2013-06-01.

BURCKHARDT, S., LEIJEN, D., SADOWSKI, C., YI, J., AND
BALL, T. 2011. Two for the price of one: a model for par-
allel and incremental computation. In Proc. of the 2011 ACM
international conference on Object oriented progr. systems lan-
guages and applications, ACM, New York, NY, USA, OOPSLA
’11, 427–444.

BURNS, D., AND OSFIELD, R. 2004. Open scene graph a: In-
troduction, b: Examples and applications. In Proc. of the IEEE
Virtual Reality 2004, IEEE Computer Society, Washington, DC,
USA, VR ’04, 265–.

CHEN, Y., DUNFIELD, J., AND ACAR, U. A. 2012. Type-directed
automatic incrementalization. In Proc. of the 33rd ACM SIG-
PLAN conference on Programming Language Design and Im-
plementation, ACM, New York, NY, USA, PLDI ’12, 299–310.

DURBIN, J., GOSSWEILER, R., AND PAUSCH, R. 1995. Amortiz-
ing 3d graphics optimization across multiple frames. In Proc. of
the 8th annual ACM symposium on User interface and software
technology, ACM, New York, NY, USA, UIST ’95, 13–19.

ERTL, M. A., AND GREGG, D. 2003. The Structure and Per-
formance of Efficient Interpreters. Journal of Instruction-Level
Parallelism 5, 2003.

HAMMER, M. A., ACAR, U. A., AND CHEN, Y. 2009. Ceal:
a c-based language for self-adjusting computation. In Proc. of
the 2009 ACM SIGPLAN conference on Programming language
design and implementation, ACM, New York, NY, USA, PLDI
’09, 25–37.

HUDSON, S. E. 1991. Incremental attribute evaluation: a flexible
algorithm for lazy update. ACM Trans. Program. Lang. Syst. 13,
3 (July), 315–341.

KNUTH, DONALD E. 1968. Semantics of context-free languages.
Mathematical systems theory 2, 127–145.

KNUTH, DONALD E. 1998. The Art of Computer Programming,
Volume 3: Sorting and Searching (2nd Edition). Addison Wesley
Longman Publishing Co., Inc., Redwood City, CA, USA.

LAINE, S., SARANSAARI, H., KONTKANEN, J., LEHTINEN, J.,
AND AILA, T. 2007. Incremental Instant Radiosity for Real-
Time Indirect Illumination. In Proceedings of the 18th Eu-
rographics conference on Rendering Techniques, Eurographics
Association, Aire-la-Ville, Switzerland, Switzerland, EGSR’07,
277–286.

MICROSOFT, 2013. WPF Graphics Rendering Overview.
http://msdn.microsoft.com/en-us/library/ms748373.aspx [On-
line; accessed May 31, 2013].

NVIDIA CORPORATION, 2013. SceniX — NVIDIA Developer
Zone. developer.nvidia.com/scenix [Online; accessed February
12, 2013].

PROEBSTING, T. A. 1995. Optimizing an ANSI C interpreter with
superoperators. In Proc. of the 22nd ACM SIGPLAN-SIGACT
symposium on Principles of progr. languages, ACM, New York,
NY, USA, POPL ’95, 322–332.

http://docs.autodesk.com/MAYAUL/2014/ENU/Maya-API-Documentation/index.html
http://docs.autodesk.com/MAYAUL/2014/ENU/Maya-API-Documentation/index.html

RAGAN-KELLEY, J., KILPATRICK, C., SMITH, B. W., EPPS, D.,
GREEN, P., HERY, C., AND DURAND, F. 2007. The Lightspeed
Automatic Interactive Lighting Preview System. ACM Trans.
Graph. 26, 3 (July).

RAMALINGAM, G., AND REPS, T. 1993. A categorized bib-
liography on incremental computation. In Proc. of the 20th
ACM SIGPLAN-SIGACT symposium on Principles of progr. lan-
guages, ACM, New York, NY, USA, POPL ’93, 502–510.

REINERS, D., VOSS, G., AND BEHR, J. 2002. Opensg: Basic
concepts. In 1. OpenSG Symposium.

REPS, T., TEITELBAUM, T., AND DEMERS, A. 1983. Incremen-
tal context-dependent analysis for language-based editors. ACM
Trans. Program. Lang. Syst. 5, 3 (July), 449–477.

ROHLF, J., AND HELMAN, J. 1994. Iris performer: A high per-
formance multiprocessing toolkit for real-time 3d graphics. In
Proceedings of the 21st annual conference on Computer graph-
ics and interactive techniques, ACM, New York, NY, USA, SIG-
GRAPH ’94, 381–394.

SITTHI-AMORN, P., LAWRENCE, J., YANG, L., SANDER, P. V.,
NEHAB, D., AND XI, J. 2008. Automated reprojection-based
pixel shader optimization. ACM Trans. Graph. 27, 5 (Dec.),
127:1–127:11.

SOWIZRAL, K., RUSHFORTH, K., AND SOWIZRAL, H. 1997. The
Java 3D API Specification, 1st ed. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA.

TOBLER, R. F. 2011. Separating semantics from rendering: a
scene graph based architecture for graphics applications. Visual
Computer 27, 6-8 (June), 687–695.

WERNECKE, J. 1993. The Inventor Mentor: Programming Object-
Oriented 3d Graphics with Open Inventor, Release 2, 1st ed.
Addison-Wesley Longman Publ. Co., Inc., Boston, MA, USA.

