Handling Large Numbers of Similar Items

Performance

fast access to attributes:
not all attributes are accessed all the time

avoid indirection

Extendibility
add additional attributes later in the design
variable numbers of attributes

hide attribute changes behind interfaces

Robert F. Tobler Rendering Engine VU

1

Vr vis



Conventional Approach using Classes

=

Module

access indirect (array and object)
access cache inefficient, if only a few fields are accessed

flexibility and shielding of modules via class inheritance

Robert F. Tobler Rendering Engine VU 2

Vr vis



Conventional Approach using Structures

Module

access direct
access cache inefficient, if only a few fields are accessed

flexibility and shielding of modules via generics and interfaces

Robert F. Tobler Rendering Engine VU 3 Vr vis



Transposed Approach

Module \ e

Only consider sets of objects
attributes are stored in arrays of primitives (int, float, V3f, ...)
individual objects identified by their index

access direct and cache efficient

Robert F. Tobler Rendering Engine VU 4 Vr vis



Shielding of Modules via Facades

0O 1 2 3 4 5 i

Module ™

the Facade hides changes in the attributes of the object set

the module cannot access attributes it does not need

Robert F. Tobler Rendering Engine VU 5 Vr vis



Flexibility in the Transposed Approach

"Positions"

"Normals"

"Colors"

01 2 3 4 5

Dictionary (Hash-table) of attribute-arrays (primitives)

attribute names as keys

flexible in the number of attributes (even at run-time)

Robert F. Tobler

Rendering Engine VU 6

Vr vis



Identifying Objects across Object Sets

"Positions" | @<
o 06 o
L_—
"Normals" | @<
o 06 o
L_—
=1L
o o o
° T I —
([ ]

_'C

Light weight object facade

contains reference to the object set, and index of object

all attributes of single object can be accessed via interfaces

Robert F. Tobler Rendering Engine VU 7 Vr vis



Implications of the Transposed Approach

Performance
gather items in sets with the same attributes
design algorithms to take advantage of fast linear access

avoid resizing/modifying object sets, create new ones instead

Extendibility

simple to add or remove attributes

Shielding of Modules

modules only get access to necessary fields via facades

Robert F. Tobler Rendering Engine VU 8 Vr vis



Geometry Generation Example:
Reading a VRML File

Parsing VRML file
build hierarchical in-memory representation of VRML file
parse intermediate nodes into Dictionaries of Dictionaries

parse leaf nodes into Dictionaries of primitive arrays:

000000

g 1 N N I I R

Robert F. Tobler Rendering Engine VU 9 Vr vis



Geometry Processing

Processing modules access dictionaries of primitive arrays
add additional attributes (primitive arrays) during processing

create new dictionaries of primitive arrays

Avoid copying of primitive arrays

000000

if an attribute can be used without
change, it is not copied

S — - ]
— > ...... e

Prepare primitive arrays for
fast rendering

create arrays of primitives so that they
can be directly submitted to graphics hardware

Robert F. Tobler Rendering Engine VU 10 Vr vis



Rendering

Submit sets of items to the rendering hardware

dictionaries of primitive array have been prepared by geometry
processing

arrays of primitives are bound as Vertex Buffer Objects (VBOs)

rendering calls are submitted to display sets of VBOs

01 2 3 4 5

"Positions" | @<

n n
Normals" | @<

"Colors" | @~

Robert F. Tobler Rendering Engine VU 11 Vrivis



Parallelizing Geometry Processing

operate on primitive arrays in parallel
do not modify existing dictionaries of primitive arrays

newly created dictionaries reference existing primitive arrays

copy-on-write
semantics:

create new arrays,
instead

of modifying
existing arrays

Robert F. Tobler Rendering Engine VU 12 Vrivis



Literature

Pitfalls of Object Oriented Programming

http://research.scee.net/files/presentations/gcapaustralia09/
Pitfalls_of Object Oriented Programming GCAP_09.pdf

Robert F. Tobler Rendering Engine VU 13 Vr vis



